高二(1)班有學(xué)生48人,現(xiàn)用系統(tǒng)抽樣的方法,抽取一個(gè)容量為4的樣本,已知學(xué)號(hào)分別為8,32,44的同學(xué)都在樣本中,那么樣本中另一位同學(xué)的學(xué)號(hào)應(yīng)是
 
考點(diǎn):系統(tǒng)抽樣方法
專題:概率與統(tǒng)計(jì)
分析:根據(jù)系統(tǒng)抽樣的特征,先求出總體分組的組數(shù),再確定每個(gè)組中依次抽取的數(shù)據(jù)是什么.
解答: 解:根據(jù)系統(tǒng)抽樣的特征,是把總體編號(hào)后,由樣本容量與總體的關(guān)系進(jìn)行分組,組數(shù)是48÷4=12,
在第一組中抽取1個(gè)樣本數(shù)據(jù),為8;
∴每個(gè)組中依次抽取的數(shù)據(jù)是8+12k(k∈N);
∴樣本中另一個(gè)同學(xué)的學(xué)號(hào)應(yīng)是20.
故答案為:20.
點(diǎn)評(píng):本題考查了系統(tǒng)抽樣方法的應(yīng)用問題,解題時(shí)應(yīng)明確系統(tǒng)抽樣的特點(diǎn)是什么,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)大于1的自然數(shù)m的三次冪,可用奇數(shù)進(jìn)行以下方式的拆分:
23=3+5
33=7+9+11
43=13+15+17+19

若121在m3的拆分中,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x5+5x4+10x3+10x2+5x+1,當(dāng)x=2時(shí)用秦九韶算法求v2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=2x-3•2-x
(1)求函數(shù)f(x)的解析式;
(2)求方程f(x)=
1
2
的負(fù)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,b>0,且a+b=4,則
1
a
+
1
b
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列結(jié)論:
①命題“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;
②命題“有些正方形是平行四邊形”的否定是“所有正方形不都是平行四邊形”;
③命題“A1,A2是對(duì)立事件”是命題“A1,A2是互斥事件”的充分不必要條件;
④若a,b是實(shí)數(shù),則“a+b>0且ab>0”是“a>0且b>0”的必要不充分條件.
其中正確結(jié)論的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知k∈R,點(diǎn)A(11,2)到直線l:y=(k+1)x+k-2的距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2
m-sinx
3+sinx
在R上的值域?yàn)閇-1,1],則實(shí)數(shù)m的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={y|y=log2x,x<2},B={y|y=(
1
2
)x,x<1}
,則A∩B=( 。
A、(
1
2
,+∞)
B、(
1
2
,2
C、(0,
1
2
)
D、(
1
2
,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案