若直線l的法向量
n
=(1 , 2)
,且經(jīng)過點M(0,1),則直線l的方程為
 
考點:直線的一般式方程
專題:直線與圓
分析:由于已知直線的法向量為
n
=(1 , 2)
,且經(jīng)過點M(0,1),我們可以直接由點法式給出直線的方程,但考慮到普通高中的教材中沒有點法式方程,故可以改用坐標法求直線的方程.
解答: 解:設(shè)l上任一P(x,y),
PM
=(x,y-1)
又∵直線l的法向量
n
=(1 , 2)
,
PM
n
,即x-1+2(y-2)=0
即:x+2y-2=0
故l的方程為:x+2y-2=0
故答案為:x+2y-2=0
點評:在求直線方程時,應(yīng)先選擇適當?shù)闹本方程的形式,并注意各種形式的適用條件,用斜截式及點斜式時,直線的斜率必須存在,而兩點式不能表示與坐標軸垂直的直線,截距式不能表示與坐標軸垂直或經(jīng)過原點的直線,故在解題時,若采用截距式,應(yīng)注意分類討論,判斷截距是否為零;若采用點斜式,應(yīng)先考慮斜率不存在的情況.
附:直線的點法式方程:若直線過(x0,y0)點,其法向量為
n
=(A,B),則直線方程為:A(x-x0)+B(y-y0)=0
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知2x2+x≤(
1
4
)x-2
,求函數(shù)y=2x-2-x的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
均為單位向量,其夾角為θ,若|
a
-
b
|<1,則θ的取值范圍是( 。
A、(0,
π
3
B、[0,
π
3
C、[0,
3
D、(
π
3
,π]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(2,0),B(0,2),C(cosα,sinα).
(Ⅰ)若α∈[-π,0],且|
AC
|=|
BC
|,求角α;
(Ⅱ)若α∈[
π
2
,π],且
AC
BC
,求
sin2α
2
sin(α-
π
4
)-cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=asin(πx+α)+bcos(πx+β)+2,其中a、b、α、β為非零常數(shù).若f(2013)=1,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)是定義在R上的函數(shù),對任意實數(shù)x、y滿足f(x)+f(y-x)=f(y),且當x>0時,f(x)<0.若對任意t∈(1,2),f(tx2-2x)<f(t+2)恒成立,求x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,則z=x+3y-4的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=cos(
2
-x)
cos(π+x)是(  )
A、最小正周期為π的奇函數(shù)
B、最小正周期為π的偶函數(shù)
C、最小正周期為
π
2
的奇函數(shù)
D、最小正周期為
π
2
的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m∈R,設(shè)命題P:?x∈{x|-2<x<2},使等式x2-2x-m=0成立;命題Q:函數(shù)f(x)=3x2+2mx+m+
4
3
有兩個不同的零點.“P∨Q”為真命題,“P∧Q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案