12.已知函數(shù)f(x)=a2015x2015+a2013x2013+a2011x2011+…+a3x3+a1x+1,且f(1)=2,則f(-1)=0.

分析 觀察多項式的各項,分別令x=1和-1,得到系數(shù)化為相反數(shù),得到所求.

解答 解:f(x)=a2015x2015+a2013x2013+a2011x2011+…+a3x3+a1x+1,且f(1)=2,
則a2015+a2013+a2011+…+a3+a1=1,所以f(-1)=-a2015-a2013-a2011-…-a3-a1+1=-1+1=0;
故答案為:0.

點評 本題考查了賦值法的應用;關(guān)鍵是發(fā)現(xiàn)x=1和x=-1時的非常數(shù)項的和為相反數(shù).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.計算lg200+$\frac{1}{2}$lg25+5(lg2+lg5)3-($\frac{1}{27}$)${\;}^{-\frac{1}{3}}$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.過定點A的直線x-my=0(m∈R)與過定點B的直線mx+y-m+3=0(m∈R)交于點P(x,y),則|PA|2+|PB|2的值為( 。
A.$\sqrt{10}$B.10C.2$\sqrt{5}$D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.計算:
(1)(2$\frac{7}{9}$)0.5+0.1-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$-3π0+$\frac{37}{48}$;   
(2)$\frac{lg2+lg5-lg8}{lg50-lg40}$+log${\;}_{\sqrt{2}}$$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若集合A={2,3},B={x|x2-5x+6=0},則A∩B=( 。
A.{2,3}B.{(2,3)}C.{x=2,x=3}D.2,3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知正項等比數(shù)列{an}滿足a5+a4+a3-a2=5,則a6+a7的最小值為( 。
A.32B.10+10$\sqrt{2}$C.20D.28

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在等差數(shù)列{an}中,a2,a4,a10為一等比數(shù)列的相鄰三項,則該等比數(shù)列的公比為1或3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上時增函數(shù),則( 。
A.f(-1)<f(3)<f(4)B.f(4)<f(3)<f(-1)C.C.f(3)<f(4)<f(-1)D.f(-1)<f(4)<f(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列命題中是假命題的是(  )
A.?m∈R,使$f(x)=({m-1})•{x^{{m^2}-4m+3}}$是冪函數(shù),且在(0,+∞)上遞減
B.函數(shù)$f(x)=lg[{{x^2}+({a+1})x-a+\frac{1}{4}}]$的值域為R,則a≤-6或a≥0
C.關(guān)于x的方程ax2+2x+1=0至少有一個負根的棄要條件是a≤1
D.函數(shù)y=f(a+x)與函數(shù)y=f(a-x)的圖象關(guān)于直線x=a對稱

查看答案和解析>>

同步練習冊答案