x | -1 | 0 | 4 | 5 |
f(x) | -1 | 2 | 2 | -1 |
A. | ①② | B. | ③④ | C. | ①②④ | D. | ②③④ |
分析 根據(jù)導(dǎo)函數(shù)的圖象求出函數(shù)的單調(diào)區(qū)間以及函數(shù)的極值點(diǎn),對①②③④分別判斷即可.
解答 解:由導(dǎo)數(shù)圖象可知,當(dāng)-1<x<0或2<x<4時(shí),f'(x)>0,函數(shù)單調(diào)遞增,
當(dāng)0<x<2或4<x<5,f'(x)<0,函數(shù)單調(diào)遞減,
所以當(dāng)x=0和x=4時(shí),函數(shù)取得極大值f(0)=2,f(4)=2,
當(dāng)x=2時(shí),函數(shù)取得極小值f(2)=0,
所以f(x)的極小值為0,
故①②正確;
x∈[-1,t]時(shí),f(x)的最大值是2,t的最大值是5,
故③錯(cuò)誤;
當(dāng)f(2)=0時(shí),函數(shù)3個(gè)零點(diǎn),
f(2)>0時(shí),函數(shù)2個(gè)零點(diǎn),
f(2)<0時(shí),函數(shù)4個(gè)零點(diǎn),
故④錯(cuò)誤;
故選:A.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p | B. | $\frac{4}{3}p$ | C. | 2p | D. | $\frac{8}{3}p$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6π}}{6}$ | B. | $\frac{\sqrt{π}}{2}$ | C. | $\frac{\sqrt{2π}}{2}$ | D. | $\frac{3\sqrt{π}}{2π}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com