分析 (1)求出函數(shù)f(x)的導(dǎo)數(shù),問題轉(zhuǎn)化為a≤lnx+$\frac{1}{x}$+1在(0,+∞)恒成立,(a>0),令g(x)=lnx+$\frac{1}{x}$+1,(x>0),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可;
(2)問題轉(zhuǎn)化為(x-1)[(x+1)lnx-a]≥0恒成立,通過討論x的范圍,結(jié)合函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:(1)f(x)=(x+l)lnx-ax+a,f′(x)=lnx+$\frac{1}{x}$+1-a,
若f(x)在(0,+∞)上單調(diào)遞增,
則a≤lnx+$\frac{1}{x}$+1在(0,+∞)恒成立,(a>0),
令g(x)=lnx+$\frac{1}{x}$+1,(x>0),
g′(x)=$\frac{x-1}{{x}^{2}}$,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,
故g(x)在(0,1)遞減,在(1,+∞)遞增,
故g(x)min=g(1)=2,
故0<a≤2;
(2)若不等式(x-1)f(x)≥0恒成立,
即(x-1)[(x+1)lnx-ax+a]≥0恒成立,
當(dāng)0<a≤2時(shí),由(1)知,當(dāng)x∈(0,﹢∞)時(shí),f(x)單調(diào)遞增.
又f(1)=0,當(dāng)x∈(0,1),f(x)<0;當(dāng)x∈(1,﹢∞)時(shí),f(x)>0,故不等式(x-1)f(x)≥0恒成立.
若a>2,對(duì)f(x)二次求導(dǎo),令二次導(dǎo)函數(shù)=0,得到x0>1,當(dāng)x∈(1,x0)時(shí),f(x)單調(diào)遞減,
∴當(dāng)x∈(1,x0)時(shí),f(x)<f(1)=0,此時(shí)(x-1)f(x)<0,矛盾,
綜上所述,0<a≤2.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想、轉(zhuǎn)化思想,考查函數(shù)恒成立問題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,3] | B. | (-∞,2] | C. | (-∞,1] | D. | [1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{5}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∨q | B. | p∧(¬q) | C. | (¬p)∧q | D. | (¬p)∨(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com