10.在平面直角坐標(biāo)系xOy中,已知圓x2+y2=5上有且僅有三個(gè)點(diǎn)到直線12x-5y+c=0的距離為1,則實(shí)數(shù)c的值是$±13(\sqrt{5}-1)$.

分析 由題意畫(huà)出圖形,把圓x2+y2=5上有且僅有三個(gè)點(diǎn)到直線12x-5y+c=0的距離為1轉(zhuǎn)化為原點(diǎn)到直線12x-5y+c=0的距離為$\sqrt{5}-1$,再由點(diǎn)到直線的距離公式得答案.

解答 解:如圖,

由題意可知,原點(diǎn)到直線12x-5y+c=0的距離為$\sqrt{5}-1$.
由點(diǎn)到直線的距離公式可得:$\frac{|c|}{\sqrt{1{2}^{2}+(-5)^{2}}}=\sqrt{5}-1$,
∴c=$±13(\sqrt{5}-1)$.
故答案為:$±13(\sqrt{5}-1)$.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查點(diǎn)到直線距離公式的應(yīng)用,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知復(fù)數(shù)z滿(mǎn)足iz=|3+4i|-i,則z的虛部是( 。
A.?-5B.?-1C.?-5iD.?-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知A=$\frac{π}{4}$,b=$\sqrt{6}$,△ABC的面積為$\frac{3+\sqrt{3}}{2}$,則c=1+$\sqrt{3}$,B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=2sin(x+$\frac{π}{6}$)-2cosx,x∈[$\frac{π}{2}$,π].
(1)若sinx=$\frac{4}{5}$,求函數(shù)f(x)的值;
(2)求函數(shù)f(x)的值域和對(duì)稱(chēng)軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{3})^{-x}-2,x≥0}\\{2lo{g}_{3}(-x),x<0}\end{array}\right.$若f(m)>1,則m的取值范圍是( 。
A.(1,+∞)B.(-$\sqrt{3}$,1)C.(-∞,-$\sqrt{3}$)∪(1,+∞)D.(-∞,-$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知在△ABC中,AB=AC=6,∠BAC=120°,D是BC邊上靠近點(diǎn)B的四等分點(diǎn),F(xiàn)是AC邊的中點(diǎn),若點(diǎn)G是△ABC的重心,則$\overrightarrow{GD}$•$\overrightarrow{AF}$=-$\frac{21}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,四邊形ABCD是正方形,延長(zhǎng)CD至E,使得DE=CD,若點(diǎn)P為CD的中點(diǎn),且$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AE}$,則λ+μ=(  )
A.3B.$\frac{5}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)f(x)=ax2-a+$\frac{e}{{e}^{x}}$,g(x)=$\frac{1}{x}$+lnx.
(Ⅰ)設(shè)h(x)=f(x)-g(x)+$\frac{{e}^{x}-ex}{x{e}^{x}}$,討論y=h(x)的單調(diào)性;
(Ⅱ)證明:對(duì)任意a∈(-∞,$\frac{1}{2}$),?x∈(1,+∞),使f(x)<g(x)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且acosB+bcosA=2ccosC.
(Ⅰ)求角C;
(Ⅱ)若c=2$\sqrt{3}$,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案