5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{3})^{-x}-2,x≥0}\\{2lo{g}_{3}(-x),x<0}\end{array}\right.$若f(m)>1,則m的取值范圍是( 。
A.(1,+∞)B.(-$\sqrt{3}$,1)C.(-∞,-$\sqrt{3}$)∪(1,+∞)D.(-∞,-$\sqrt{3}$)

分析 由題意可得,$\left\{\begin{array}{l}{m≥0}\\{{(\frac{1}{3})}^{-m}-2>1}\end{array}\right.$①,或 $\left\{\begin{array}{l}{m<0}\\{{2log}_{3}(-m)>1}\end{array}\right.$②,分別求得①②的解集,再取并集,即得所求.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{3})^{-x}-2,x≥0}\\{2lo{g}_{3}(-x),x<0}\end{array}\right.$,f(m)>1,
∴$\left\{\begin{array}{l}{m≥0}\\{{(\frac{1}{3})}^{-m}-2>1}\end{array}\right.$  ①,或 $\left\{\begin{array}{l}{m<0}\\{{2log}_{3}(-m)>1}\end{array}\right.$ ②.
解①求得m>1,解②求得m<-$\sqrt{3}$,故m的取值范圍是(-∞,-$\sqrt{3}$)∪(1,+∞),
故選:C.

點(diǎn)評(píng) 本題主要考查分段函數(shù)的應(yīng)用,解對(duì)數(shù)不等式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某校1000名高三學(xué)生參加了一次數(shù)學(xué)考試,這次考試考生的分?jǐn)?shù)服從正態(tài)分布N(90,σ2),若分?jǐn)?shù)在(70,110]內(nèi)的概率為0.7,估計(jì)這次考試分?jǐn)?shù)不超過70分的人數(shù)為325人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過點(diǎn)M(p,0)的直線交拋物線于A,B兩點(diǎn),若$\overrightarrow{AM}$=2$\overrightarrow{MB}$,則$\frac{|AF|}{|BF|}$=(  )
A.2B.$\frac{5}{2}$C.$\sqrt{2}$D.與p有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“|x-1|<2成立”是“x(x-3)<0成立”的( 。
A.充分必要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知一個(gè)四棱錐的三視圖如圖所示,則此四棱錐的體積為$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,已知圓x2+y2=5上有且僅有三個(gè)點(diǎn)到直線12x-5y+c=0的距離為1,則實(shí)數(shù)c的值是$±13(\sqrt{5}-1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=ln(ex+1)-$\frac{x}{2}$( 。
A.是偶函數(shù),但不是奇函數(shù)B.是奇函數(shù),但不是偶函數(shù)
C.既是奇函數(shù),又是偶函數(shù)D.既不是奇函數(shù),也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.${∫}_{1}^{e}$(x+$\frac{1}{x}$)dx=(  )
A.e2B.$\frac{{e}^{2}+1}{2}$C.$\frac{{e}^{2}-1}{2}$D.$\frac{{e}^{2}+3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,正方形ADMN與矩形ABCD所在的平面相互垂直,AB=2AD=6,點(diǎn)E為線段AB上一點(diǎn).
(1)若點(diǎn)E是AB的中點(diǎn),求證:BM∥平面NDE;
(2)若直線EM與平面所成角的大小為$\frac{π}{6}$,求VE-ADMN:VE-CDM

查看答案和解析>>

同步練習(xí)冊(cè)答案