【題目】有一個(gè)不透明的袋子,裝有4個(gè)大小形狀完全相同的小球,球上分別標(biāo)有數(shù)字1,2,3,4.現(xiàn)按如下兩種方式隨機(jī)取球兩次,每種方式中第1次取到球的編號(hào)記為,第2次取到球的編號(hào)記為.
(1)若逐個(gè)不放回地取球,求是奇數(shù)的概率;
(2)若第1次取完球后將球再放回袋中,然后進(jìn)行第2次取球,求直線與雙曲線有公共點(diǎn)的概率.
【答案】(1);(2).
【解析】
(1)用列舉法可求基本事件的總數(shù)和隨機(jī)事件中的基本事件的總數(shù),利用古典概型的概率公式可求概率.
(2)先求出直線與雙曲線有公共點(diǎn)時(shí)滿(mǎn)足的條件,從而得到隨機(jī)事件中基本事件的個(gè)數(shù),再根據(jù)古典概型的概率公式可求概率.
解:用表示先后兩次取球構(gòu)成的基本事件.
(1)基本事件有:,,,,,,,,,,,,共12個(gè).
設(shè)“是奇數(shù)”為事件,則事件包含的基本事件有:,,,,,,,共8個(gè),
故.
(2)基本事件有,,,,,,,,,,,,,,,共16個(gè).
設(shè)“直線與雙曲線有公共點(diǎn)”為事件,
因?yàn)殡p曲線的漸近線為,所以,得,則事件包含的基本事件有,,,,,共6個(gè),
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過(guò)P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,是邊長(zhǎng)為的正方形.且,點(diǎn)是的中點(diǎn).
(1)求證:;
(2)求平面與平面所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,過(guò)點(diǎn)的動(dòng)直線交拋物線于,兩點(diǎn)
(1)當(dāng)恰為的中點(diǎn)時(shí),求直線的方程;
(2)拋物線上是否存在一個(gè)定點(diǎn),使得以弦為直徑的圓恒過(guò)點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),且),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)將曲線的參數(shù)方程化為普通方程,并將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求曲線與曲線交點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的一個(gè)頂點(diǎn)為拋物線的頂點(diǎn), , 兩點(diǎn)都在拋物線上,且.
(1)求證:直線必過(guò)一定點(diǎn);
(2)求證: 面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),一個(gè)焦點(diǎn)為.
(1)求橢圓的方程;
(2)若直線與軸交于點(diǎn),與橢圓交于兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,已知直線與曲線C交于不同的兩點(diǎn)A,B.
(1)求直線的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)P(1,2),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,焦距為.
(1)求的方程;
(2)若斜率為的直線與橢圓交于,兩點(diǎn)(點(diǎn),均在第一象限),為坐標(biāo)原點(diǎn).
①證明:直線的斜率依次成等比數(shù)列.
②若與關(guān)于軸對(duì)稱(chēng),證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com