4.已知集合A={x|x2-4=0},B={1,2},則A∩B=( 。
A.2B.{-2,2}C.{2}D.

分析 求出A中方程的解確定出A,找出A與B的交集即可.

解答 解:由A中方程x2-4=0,解得:x=-2或x=2,即A={-2,2},
∵B={1,2},
∴A∩B={2},
故選:C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對任意正整數(shù)n與k(k≤n),f(n,k)表示不超過[$\frac{n}{k}$],且與n為互質(zhì)的正整數(shù)的個數(shù),則f(100,3)=( 。
A.11B.13C.14D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某幾何體的三視圖如圖所示,其中正視圖是腰長為2cm的等腰三角形,俯視圖是半徑為1cm的半圓,則該幾何體的表面積是$\frac{3π}{2}$+$\sqrt{3}$cm2,體積是$\frac{\sqrt{3}}{6}$πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知A={x|x2-4x>0},B={x|2x-3>0},全集U=R,則A∩B=(4,+∞),(∁UA)∪(∁UB)=(-∞,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知F1,F(xiàn)2為橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點,以原點O為圓心,半焦距為半徑的圓與橢圓相交于四個點,設(shè)位于y軸右側(cè)的兩個交點為A,B,若△ABF1為等邊三角形,則橢圓的離心率為( 。
A.$\sqrt{2}$-1B.$\sqrt{3}$-1C.$\frac{{\sqrt{2}-1}}{2}$D.$\frac{{\sqrt{3}-1}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.下列關(guān)于算法的說法,正確的序號是(2)、(3)、(4).
(1)一個問題的算法是唯一的;
(2)算法的操作步驟是有限的;
(3)算法的每一步操作必須是明確的,不能有歧義;
(4)算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知有條光線從點A(-2,1)出發(fā)射向x軸B,經(jīng)過x軸反射后射向y軸上的C點,再經(jīng)過y軸反射后到達點D(-2,7).
(1)求直線BC的方程.  
(2)求光線從A點到達D點所經(jīng)過的路程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)正項等比數(shù)列{an}的前n項和為Sn,記bn=$\frac{{{a}_{n+1}}^{2}}{{a}_{n}}$.且數(shù)列{bn}的前n項和為Tn
(1)求證:{bn}是等比數(shù)列;
(2)若Sn<Tn恒成立,求等比數(shù)列{an}公比q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.從巍山縣廟街鎮(zhèn)一所小學(xué)的甲、乙兩個班級分別隨機抽取4名學(xué)生的年齡制作出如右所示莖葉圖,乙紀錄中有一個數(shù)據(jù)模糊,無法確認,以X表示.
(Ⅰ)若這8個學(xué)生的平均年齡是9.5歲,求X;
(Ⅱ)有關(guān)專家的研究結(jié)果顯示,兒童身高b(cm)與年齡a(歲)有關(guān)系:b=7a+70.在(Ⅰ)的條件下,試分別估計甲、乙兩個班級學(xué)生的身高;
(Ⅲ)估計哪個班學(xué)生的身高更整齊,說明理由.

查看答案和解析>>

同步練習(xí)冊答案