在等比數(shù)列{an}中,a1+a2=1,a4+a5=8,則a7+a8=
 
考點:等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:由題意易得數(shù)列的公比q,進而可得a7+a8=(a1+a2)q6,代值計算可得.
解答: 解:設等比數(shù)列{an}的公比為q,
∴q3=
a4+a5
a1+a2
=8,解得q=2,
∴a7+a8=(a1+a2)q6=64
故答案為:64.
點評:本題考查等比數(shù)列的通項公式,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a=20.3,b=0.32,c=log20.5,則a,b,c的大小關系為( 。
A、a<b<c
B、b<a<c
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某租賃公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(1)設每輛車的月租金為x元,試寫出租賃公司月收益y關于x的函數(shù);
(2)求每輛車的月租金為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列各式的值:
(1)(
8
125
)-
1
3
-(-
3
5
)0+160.75
;
(2)(log43+log83)(log32+log92).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(m-1)xm2-m-3為冪函數(shù),g(x)=
1
4
x+f(x).
(1)求證:函數(shù)g(x)是奇函數(shù);
(2)根據(jù)函數(shù)單調(diào)性定義證明:函數(shù)g(x)在[2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知點A(-1,-2),B(2,3),C(-2,-1).
(1)求以線段AB,AC為鄰邊的平行四邊形的兩條對角線的長;
(2)若(
AB
-k
OC
)⊥
OC
,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(a+b)n展開式中,若第14項與第15項的二項式系數(shù)之比為1:2,則二項式系數(shù)最大的項是( 。
A、第17項
B、第18項
C、第20項或第21項
D、第21項或第22項

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x-1
+
x+2
的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=x2+ex-
1
2
(x<0),g(x)=x2+ln(x+a)的圖象上存在關于y軸對稱的點,則a的取值范圍是
 

查看答案和解析>>

同步練習冊答案