1.某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如表:
 價(jià)格x(元/kg) 10 15 20 25 30
 日需求量y(kg) 11 10 8 6 5
(1)求y關(guān)x的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價(jià)格x=40元/kg時(shí),日需求量y的預(yù)測(cè)值為多少?
參考公式:線性回歸方程y=bx+a,其中b=$\frac{{x}_{1}{y}_{1}+{x}_{2}{y}_{2}+…{x}_{n}{y}_{n}-n\overline{x}\overline{y}}{{{x}_{1}}^{2}+{{x}_{2}}^{2}+…{{x}_{n}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

分析 (1)根據(jù)回歸系數(shù)公式計(jì)算回歸系數(shù),得出回歸方程;
(2)把x=40,代入回歸方程解出y即可.

解答 解:(1)$\overline{x}$=20,$\overline{y}$=8,
∴b=$\frac{110+150+160+150+150-5×20×8}{100+225+400+625+900-5×2{0}^{2}}$=-0.32,a=8-(-0.32)×20=14.4,
∴線性回歸方程為y=-0.32x+14.4;
(2)當(dāng)價(jià)格x=40元/kg時(shí),y=-0.32x+14.4=1.6kg,即日需求量y的預(yù)測(cè)值為1.6kg.

點(diǎn)評(píng) 本題考查線性回歸方程,是一個(gè)基礎(chǔ)題,解題的關(guān)鍵是利用最小二乘法寫出線性回歸系數(shù),注意解題的運(yùn)算過程不要出錯(cuò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知拋物線x2=4y的焦點(diǎn)是F,直線$x-\sqrt{3}y+\sqrt{3}=0$交拋物線于A,B兩點(diǎn),且|AF|>|BF|,則$\frac{{|{AF}|}}{{|{BF}|}}$=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,點(diǎn)P在正方形ABCD的邊界及其內(nèi)部運(yùn)動(dòng).平面區(qū)域W由所有滿足${A_1}P≤\sqrt{5}$的點(diǎn)P組成,則W的面積是$\frac{π}{4}$;四面體P-A1BC的體積的最大值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知四邊形ABCD為正方形,四邊形ABEF,四邊形DCEF為菱形,且∠AFE=$\frac{π}{3}$,M為BC的中點(diǎn).
(Ⅰ)證明:BC⊥平面MEF;
(Ⅱ)求直線DE與平面MEF所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在等腰Rt△ABC中,∠BAC=90°,腰長(zhǎng)為2,D、E分別是邊AB、BC的中點(diǎn),將△BDE沿DE翻折,得到四棱錐B-ADEC,且F為棱BC中點(diǎn),BA=$\sqrt{2}$.
(1)求證:EF⊥平面BAC;
(2)在線段AD上是否存在一點(diǎn)Q,使得AF∥平面BEQ?若存在,求二面角Q-BE-A的余弦值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若a為實(shí)數(shù),$\frac{2+ai}{1+i}$=-2i,則a等于( 。
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知某圓與y軸切于點(diǎn)(0,3),與x軸所截得的線段長(zhǎng)為8,則該圓的標(biāo)準(zhǔn)方程為(x+5)2+(y-3)2=25或(x-5)2+(y-3)2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知一扇形的中心角是α,所在圓的半徑是R.
(1)若α=60°,R=10cm,求扇形的弧長(zhǎng)及扇形的面積;
(2)若扇形的周長(zhǎng)是12cm,當(dāng)α為多少弧度時(shí),該扇形有最大面積?并且最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,橢圓C的長(zhǎng)半軸長(zhǎng)為2.
(1)求橢圓C的方程;
(2)已知直線l:y=kx-$\sqrt{3}$與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案