6.若a為實(shí)數(shù),$\frac{2+ai}{1+i}$=-2i,則a等于( 。
A.1B.2C.-1D.-2

分析 利用復(fù)數(shù)的運(yùn)算法則即可得出.

解答 解:$\frac{2+ai}{1+i}$=-2i,∴2+ai=-2i(1+i)=-2i+2,∴a=-2.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.袋中裝有大小相同的3個(gè)白球和4個(gè)黑球,現(xiàn)從袋中任取3個(gè)球,設(shè)ξ為所取出的3個(gè)球中白球數(shù)與黑球數(shù)之差的絕對(duì)值.
(1)求ξ的分布列及數(shù)學(xué)期望;
(2)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調(diào)遞增”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足:${a_1}=1,{a_2}=2,{S_n}+1={a_{n+2}}-{a_{n+1}}({n∈{N^*}})$,若不等式λSn>an恒成立,則實(shí)數(shù)λ的取值范圍是λ>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)是定義在(-1,1)上的偶函數(shù),在(0,1)上是增函數(shù),若f(a-2)-f(4-a2)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如表:
 價(jià)格x(元/kg) 10 15 20 25 30
 日需求量y(kg) 11 10 8 6 5
(1)求y關(guān)x的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價(jià)格x=40元/kg時(shí),日需求量y的預(yù)測(cè)值為多少?
參考公式:線性回歸方程y=bx+a,其中b=$\frac{{x}_{1}{y}_{1}+{x}_{2}{y}_{2}+…{x}_{n}{y}_{n}-n\overline{x}\overline{y}}{{{x}_{1}}^{2}+{{x}_{2}}^{2}+…{{x}_{n}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.兩條平行線l1,l2分別過(guò)點(diǎn)P(-1,2),Q(2,-3),它們分別繞P,Q旋轉(zhuǎn),但始終保持平行,則l1,l2之間距離的取值范圍是( 。
A.(5,+∞)B.(0,5]C.$(\sqrt{34},+∞)$D.$(0,\sqrt{34}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.用反證法證明命題:“若正系數(shù)一元二次方程ax2+bx+c=0(a=0)有有理根,那么a,b,c中至多有兩個(gè)是奇數(shù)”時(shí),下列假設(shè)中正確的是( 。
A.假設(shè)a,b,c都是奇數(shù)B.假設(shè)a,b,c至少有兩個(gè)是奇數(shù)
C.假設(shè)a,b,c至多有一個(gè)是奇數(shù)D.假設(shè)a,b,c不都是奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.2017年,嘉積中學(xué)即將迎來(lái)100周年校慶.為了了解在校同學(xué)們對(duì)嘉積中學(xué)的看法,學(xué)校進(jìn)行了調(diào)查,從三個(gè)年級(jí)任選三個(gè)班,同學(xué)們對(duì)嘉積中學(xué)的看法情況如下:
對(duì)嘉積中學(xué)的看法非常好,嘉積中學(xué)奠定了
我一生成長(zhǎng)的起點(diǎn)
很好,我的中學(xué)很快樂(lè)很充實(shí)
A班人數(shù)比例$\frac{1}{2}$$\frac{1}{2}$
B班人數(shù)比例$\frac{2}{3}$$\frac{1}{3}$
C班人數(shù)比例$\frac{3}{4}$$\frac{1}{4}$
(Ⅰ)從這三個(gè)班中各選一個(gè)同學(xué),求恰好有2人認(rèn)為嘉積中學(xué)“非常好”的概率(用比例作為相應(yīng)概率);
(Ⅱ)若在B班按所持態(tài)度分層抽樣,抽取9人,在這9人中任意選取3人,認(rèn)為嘉積中學(xué)“非常好”的人數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.a(chǎn)b≥0是|a-b|=|a|-|b|的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案