分析 (1)由題意M(c,$\frac{^{2}}{a}$),因為A(-a,0),所以$\frac{\frac{^{2}}{a}}{a+c}=\frac{1}{2}$,$\frac{a-c}{a}=1-e=\frac{1}{2}$,可得橢圓Γ的離心率
(2)由(1)可知,a=2c,由b2=a2-c2=4c2-c2=3c2,∴橢圓方程為:$\frac{{x}^{2}}{4{c}^{2}}+\frac{{y}^{2}}{3{c}^{2}}=1$,
M(c,$\frac{3}{2}$c),A(-2c,0),設(shè)外接圓的圓心為T(t,0),由丨TA丨=丨TM丨得(t+2c)2=(t-c)2+$\frac{9}{4}$c2,解得t=-$\frac{c}{8}$.
求得切線方程,代入橢圓方程,求得丨MD丨,根據(jù)點到直線的距離公式及三角形面積公式,代入即可求得c的值,求得橢圓方程.
解答 解:(1)由題意M(c,$\frac{^{2}}{a}$),因為A(-a,0),所以$\frac{\frac{^{2}}{a}}{a+c}=\frac{1}{2}$,$\frac{a-c}{a}=1-e=\frac{1}{2}$,e=$\frac{1}{2}$,∴橢圓Γ的離心率為$\frac{1}{2}$.
(2)由(1)可知,a=2c,由b2=a2-c2=4c2-c2=3c2,∴橢圓方程為:$\frac{{x}^{2}}{4{c}^{2}}+\frac{{y}^{2}}{3{c}^{2}}=1$,
M(c,$\frac{3}{2}$c),A(-2c,0),設(shè)外接圓的圓心為T(t,0),由丨TA丨=丨TM丨得(t+2c)2=(t-c)2+$\frac{9}{4}$c2,解得t=-$\frac{c}{8}$.
kTM=$\frac{\frac{3}{2}c}{c+\frac{c}{8}}=\frac{4}{3}$,∴切線斜率k=-$\frac{3}{4}$,∴∴切線方程為3x+4y-9c=0,
代入橢圓方程消y得7x2-18cx+11c2=0,
△=182c2-4×7×11c2=16c2>0,xD=$\frac{11c}{7}$,yD=$\frac{25c}{14}$,
∴丨MD丨=$\sqrt{({x}_{C}-{x}_{D})^{2}+({y}_{C}-{y}_{D})^{2}}=\frac{5c}{7}$,F(xiàn)2點到CD的距離d=$\frac{6c}{5}$,
由S=$\frac{1}{2}$丨CD丨•d,得$\frac{1}{2}×\frac{5c}{7}×\frac{6c}{5}=\frac{3}{7}{c}^{2}=\frac{6}{7}$,∴c2=2,
∴橢圓方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{6}=1$
點評 題考查橢圓的標(biāo)準(zhǔn)方程及簡單性質(zhì),直線與橢圓的位置關(guān)系,點到直線的距離公式及三角形面積公式,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -4 | C. | -5 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 1 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2+4x+3 | B. | f(x)=-3x+1 | C. | f(x)=$\frac{2}{x}$ | D. | f(x)=x2-4x+3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com