19.F1、F2是雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足|PF1|•|PF2|=32,則∠F1PF2是(  )
A.鈍角B.直角C.銳角D.以上都有可能

分析 根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出焦點(diǎn)坐標(biāo),結(jié)合余弦定理進(jìn)行求解即可.

解答 解:由雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$知F1(-5,0),F(xiàn)2(5,0),則|F1F2|=10;
點(diǎn)P在雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$上,不妨設(shè)點(diǎn)P在右支上,
則|PF1|-|PF2|=6,
平方得${({|P{F_1}|-|P{F_2}|})^2}=36$,
即$|P{F_1}{|^2}-2|P{F_1}||P{F_2}|+|P{F_2}{|^2}=36$;
因?yàn)閨PF1||PF2|=32,所以$|P{F_1}{|^2}+|P{F_2}{|^2}=100$,
又由余弦定理得$cos∠{F_1}P{F_2}=\frac{{|P{F_1}{|^2}+|P{F_2}{|^2}-|{F_1}{F_2}{|^2}}}{{2|P{F_1}||P{F_2}|}}=\frac{100-100}{{2|P{F_1}||P{F_2}|}}=0$,
即cos∠F1PF2=0,所以∠F1PF2=90°.
故選:B.

點(diǎn)評(píng) 本題主要考查雙曲線的性質(zhì)的應(yīng)用,根據(jù)雙曲線的定義結(jié)合余弦定理是解決本題的關(guān)鍵.考查學(xué)生的運(yùn)算和轉(zhuǎn)化能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題“對(duì)于?n∈N,n2>0”的否定為(  )
A.對(duì)于?n∈N,n2<0B.?n0∈N,n2>0C.對(duì)于?n∈N,n2≤0D.?n0∈N,n2≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,正三棱柱ABC-A1B1C1中,AB=AA1=2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合M={x|x2+x-2<0},N={x|log2x<1},則M∩N=(  )
A.(-2,1)B.(-1,2)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S5=35,S9=117,則a4=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2},\;\;\;\;\;x≥0\\{2^x},\;\;\;\;\;x<0\end{array}\right.$,則f(-log23)=$\frac{1}{3}$;若$f(f(x))=\frac{1}{2}$,則x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x-aex
(1)若函數(shù)g(x)=f(x)+f′(x)在點(diǎn)(0,g(0))處的切線方程為x+y+1=0,求實(shí)數(shù)a的值;
(2)當(dāng)a>0時(shí),函數(shù)f(x)存在兩個(gè)零點(diǎn)x1,x2,且x1<x2,求證:lnx1-lnx2<lna+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線y=x2+bx+c在點(diǎn)(1,2)處的切線與直線y=x-2平行,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=clnx+$\frac{1}{2}$x2+bx(b,c∈R,c≠0)且x=1為f(x)的極值點(diǎn).
(1)若在曲線以g(c)=f(x)-$\frac{1}{2}$x2上點(diǎn)(1,g(1))處的切線過點(diǎn)(2,0),求b,c的值;
(2)若f(x)=0恰有兩解,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案