9.命題“對于?n∈N,n2>0”的否定為(  )
A.對于?n∈N,n2<0B.?n0∈N,n2>0C.對于?n∈N,n2≤0D.?n0∈N,n2≤0

分析 根據(jù)全稱命題的否定是特稱命題進行判斷即可.

解答 解:命題是全稱命題,則命題的否定是特稱命題,則否定為:?n0∈N,n2≤0,
故選:D

點評 本題主要考查含有量詞的命題的否定,根據(jù)特稱命題的否定是全稱命題,全稱命題的否定是特稱命題是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.△ABC中,角A、B、C所對的邊分別為a、b、c,B=$\frac{2π}{3}$,sinA:sinC=4:3,且△ABC的面積為$\sqrt{3}$,則c=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合A={2,3,a2+1},B={a2+a-4,2a+1,-1},且A∩B={2},則a的取值集合是( 。
A.{-3}B.{2,-3}C.{-3,$\frac{1}{2}$}D.{-3,2,$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=sin2x-2cosx的值域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且a+b=3.
(1)求橢圓C的方程;
(2)直線x+y-m=0(m是正常數(shù))與橢圓C交于P、Q兩點,當$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{12}{5}$時,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.用列表法表示函數(shù)f(x),g(x)如下:
x123
 f(x)131
x123
g(x)321
則滿足f[g(x)]<g[f(x)]的x的值為( 。
A.1或3B.3或2C.2D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)(ω>0)$.若函數(shù)f(x)相鄰兩對稱軸的距離等于$\frac{π}{2}$.
(1)求ω的值;并求函數(shù)f(x)在區(qū)間$[{0,\frac{π}{2}}]$的值域;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,若$f(A)=1,a=\sqrt{3},b+c=3$(b>c),求邊b、c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,a、b、c分別為內(nèi)角A、B、C對邊,且2cos(A+2C)+4sinBsinC=1.
(1)求A;
(2)若a=3$\sqrt{6}$,cos$\frac{B}{2}$=$\frac{2\sqrt{2}}{3}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.F1、F2是雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的兩個焦點,點P在雙曲線上且滿足|PF1|•|PF2|=32,則∠F1PF2是(  )
A.鈍角B.直角C.銳角D.以上都有可能

查看答案和解析>>

同步練習(xí)冊答案