2.某家庭連續(xù)五年收入x與支出y如表:
年份20122013201420152016
收入(萬(wàn)元)8.28.610.011.311.9
支出(萬(wàn)元)6.27.58.08.59.8
畫(huà)散點(diǎn)圖知:y與x線性相關(guān),且求得的回歸方程是y=bx+a,其中b=0.76,則據(jù)此預(yù)計(jì)該家庭2017年若收入15萬(wàn)元,支出為( 。┤f(wàn)元.
A.11.4B.11.8C.12.0D.12.2

分析 由表中數(shù)據(jù)計(jì)算平均數(shù)$\overline{x}$、$\overline{y}$,
代入回歸方程求出a,寫(xiě)出回歸方程,
把x=15代入回歸方程計(jì)算$\stackrel{∧}{y}$的值.

解答 解:由表中數(shù)據(jù),計(jì)算$\overline{x}$=$\frac{1}{5}$×(8.2+8.6+10.0+11.3+11.9)=10,
$\overline{y}$=$\frac{1}{5}$×(6.2+7.5+8.0+8.5+9.8)=8,
代入回歸方程可得a=8-0.76×10=0.4,
∴回歸方程為$\stackrel{∧}{y}$=0.76x+0.4,
把x=15代入回歸方程計(jì)算$\stackrel{∧}{y}$=0.76×15+0.4=11.8.
故選:B.

點(diǎn)評(píng) 本題考查了線性回歸方程與平均值的計(jì)算問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,平行四邊形ABCD的兩條對(duì)角線相交于點(diǎn)O,點(diǎn)E、F分別在邊AB、AD上,$\overrightarrow{AE}$=$\frac{5}{7}$$\overrightarrow{AB}$,$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AD}$,直線EF交于AC于點(diǎn)K,$\overrightarrow{AK}$=λ$\overrightarrow{AO}$,則λ等于( 。
A.$\frac{8}{27}$B.$\frac{1}{3}$C.$\frac{10}{27}$D.$\frac{11}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知復(fù)數(shù)z滿足(3-4i)z=1+2i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)是( 。
A.-$\frac{1}{5}-\frac{2}{5}$iB.$-\frac{1}{5}+\frac{2}{5}i$C.$\frac{1}{5}+\frac{2}{5}$iD.$\frac{1}{5}-\frac{2}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列說(shuō)法錯(cuò)誤的是( 。
A.若命題p∧q為假命題,則p,q都是假命題
B.已知命題p:?x∈R,x2+x+1>0,則¬p:?x0∈R,x02+x0+1≤0
C.命題“若x2-3x+2=0,則x=1”的逆命題為:“若x≠1,則x2-3x+2≠0”
D.“x=1”是“x2-3x+2=0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.過(guò)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點(diǎn)F(-c,0)(c>0),作圓x2+y2=a2的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線右支于點(diǎn)P,若$\overrightarrow{OE}=\frac{1}{2}({\overrightarrow{OF}+\overrightarrow{OP}})$,則雙曲線的離心率為(  )
A.$2\sqrt{5}$B.$\sqrt{5}$C.$\frac{{\sqrt{10}}}{2}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)$f(x)=x-mlnx-\frac{m-1}{x}({m∈R})$,$g(x)=\frac{1}{2}{x^2}+{e^x}-x{e^x}$,
(1)當(dāng)x∈[1,e],求f(x)的最小值,
(2)當(dāng)m≤2時(shí),若存在${x_1}∈[{e,{e^2}}]$,使得對(duì)任意x2∈[-2,0],f(x1)≤g(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)向量$\overrightarrow{AB}=(1,4),\overrightarrow{BC}=(m,-1)$,且$\overrightarrow{AB}⊥\overrightarrow{BC}$,則實(shí)數(shù)m的值為( 。
A.-10B.-13C.-7D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=2sin2x+cos(2x-$\frac{π}{3}$)-1
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某大學(xué)隨機(jī)抽取30名學(xué)生參加環(huán)保知識(shí)測(cè)試,得分(十分制)如圖所示,假設(shè)得分的中位數(shù)為me,眾數(shù)為m0,平均值為$\overline x$,則( 。
A.me=m0=$\overline x$B.me=m0<$\overline x$C.me<m0<$\overline x$D.m0<me<$\overline x$

查看答案和解析>>

同步練習(xí)冊(cè)答案