12.已知橢圓的對(duì)稱軸為坐標(biāo)軸,中心在原點(diǎn),且過(guò)(3,0)點(diǎn),其離心率e=$\frac{{\sqrt{6}}}{3}$,求橢圓的標(biāo)準(zhǔn)方程.

分析 利用橢圓的簡(jiǎn)單性質(zhì)直接求解,需要注意的是要分焦點(diǎn)在x軸和焦點(diǎn)在y軸兩種情況分別求解.

解答 解:①焦點(diǎn)在x軸上時(shí),
由題意知a=3,$\frac{c}{a}$=$\frac{{\sqrt{6}}}{3}$,
解得c=$\sqrt{6}$,b2=a2-c2=9-6=3.
∴橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1$.
②焦點(diǎn)在y軸上時(shí),
由題意可知b=3,$\frac{c}{a}$=$\frac{{\sqrt{6}}}{3}$,且a2=b2+c2
解得c2=18,a2=27.
∴橢圓的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{27}+\frac{{x}^{2}}{9}=1$.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程的求法,解題時(shí)要注意分類討論的合理運(yùn)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知?jiǎng)狱c(diǎn)M在運(yùn)動(dòng)過(guò)程中,總滿足|MF1|+|MF2|=2$\sqrt{2}$,其中F1(-1,0),F(xiàn)2(1,0).
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)斜率存在且過(guò)點(diǎn)A(0,1)的直線l與軌跡E交于A,B兩點(diǎn),軌跡E上存在一點(diǎn)P滿足$\sqrt{2}$$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,且長(zhǎng)度單位相同.曲線C1的方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),曲線C2的極坐標(biāo)方程為C2:ρcosθ+ρsinθ=1,若曲線C1與C2相交于A、B兩點(diǎn).
(1)求|AB|的值;  
(2)求點(diǎn)M(-1,2)到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.$\frac{{1+\sqrt{3}tan{{50}°}}}{{\sqrt{1-cos{{100}°}}}}$=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在等差數(shù)列{an}中,a1=1,Sn為其前n項(xiàng)和.若$\frac{{S}_{19}}{19}$-$\frac{{S}_{17}}{17}$=6,則S10的值等于( 。
A.246B.258C.280D.270

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.$\frac{\sqrt{1-2sin100°cos280°}}{cos370°-\sqrt{1-co{s}^{2}170°}}$的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.用數(shù)字0,1,2,3,7組成42個(gè)沒(méi)有重復(fù)數(shù)字的五位偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)y=|x-1|,x∈[-1,2]的值域是[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.i是虛數(shù)單位,復(fù)數(shù)$\frac{5-i}{1+i}$表示的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案