【題目】某城市在進(jìn)行規(guī)劃時(shí),準(zhǔn)備設(shè)計(jì)一個(gè)圓形的開放式公園.為達(dá)到社會(huì)和經(jīng)濟(jì)效益雙豐收.園林公司進(jìn)行如下設(shè)計(jì),安排圓內(nèi)接四邊形作為綠化區(qū)域,其余作為市民活動(dòng)區(qū)域.其中區(qū)域種植花木后出售,區(qū)域種植草皮后出售,已知草皮每平方米售價(jià)為元,花木每平方米的售價(jià)是草皮每平方米售價(jià)的三倍. 若 km , km
(1)若 km ,求綠化區(qū)域的面積;
(2)設(shè),當(dāng)取何值時(shí),園林公司的總銷售金額最大.
【答案】(1)綠化區(qū)域的面積為 ;(2)當(dāng)時(shí),園林公司的銷售金額最大,最大為百萬元.
【解析】
(1)若 km,可得,進(jìn)而求出,即可求綠化區(qū)域的面積(2)設(shè),求出園林公司的總銷售金額,利用導(dǎo)數(shù)可得結(jié)論.
(1)在中,,,,
由余弦定理得,
因?yàn)?/span>, 所以,
又因?yàn)?/span>、、、共圓,所以.
在中,由余弦定理得,
將,代入化簡(jiǎn)得,
解得(舍去).
所以
即綠化空間的面積為
(2)在、中分別利用余弦定理得
①
②
聯(lián)立①②消去得,得
,解得(舍去).
因?yàn)?/span>,所以,即.
因?yàn)椴萜っ科椒矫资蹆r(jià)為元,則花木每平方米售價(jià)為元,設(shè)銷售金額為百萬元.
令,解得,又,妨設(shè),
則函數(shù)在上為增函數(shù);
令,解得,則函數(shù)在上為減函數(shù),
所以當(dāng)時(shí),.
答:(1)綠化區(qū)域的面積為 ;(2)當(dāng)時(shí),園林公司的銷售金額最大,最大為百萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線平面,直線平行四邊形,四棱錐的頂點(diǎn)在平面上,,,,,分別是與的中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港口水的深度是時(shí)間(,單位:)的函數(shù),記作.下面是某日水深的數(shù)據(jù):
經(jīng)長(zhǎng)期觀察,的曲線可以近似地看成函數(shù)的圖象.一般情況下,船舶航行時(shí),船底離海底的距離為或以上時(shí)認(rèn)為是安全的(船舶停靠時(shí),船底只需不碰海底即可).某船吃水程度(船底離水面的距離)為,如果該船希望在同一天內(nèi)安全進(jìn)出港,請(qǐng)問,它最多能在港內(nèi)停留( )小時(shí)(忽略進(jìn)出港所需的時(shí)間).
A.6 B.12
C.16 D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點(diǎn).
(1)求證:AE⊥B1C;
(2)若G為C1C中點(diǎn),求二面角C-AG-E的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)
已知橢圓C:過點(diǎn),且長(zhǎng)軸長(zhǎng)等于4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是橢圓C的兩個(gè)焦點(diǎn),⊙O是以F1F2為直徑的圓,直線l: y=kx+m與⊙O相切,并與橢圓C交于不同的兩點(diǎn)A、B,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線經(jīng)過坐標(biāo)原點(diǎn),求的值;
(2)若存在極小值,使不等式恒成立,求實(shí)數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知橢圓的離心率為,左、右焦點(diǎn)分別是,以為圓心以3為半徑的圓與以為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過橢圓上一動(dòng)點(diǎn)的直線,過F2與x軸垂直的直線記為,右準(zhǔn)線記為;
①設(shè)直線與直線相交于點(diǎn)M,直線與直線相交于點(diǎn)N,證明恒為定值,并求此定值。
②若連接并延長(zhǎng)與直線相交于點(diǎn)Q,橢圓的右頂點(diǎn)A,設(shè)直線PA的斜率為,直線QA的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓上一點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B,F(xiàn)為橢圓的右焦點(diǎn),AF⊥BF,∠ABF=,,,則橢圓的離心率的取值范圍為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com