【題目】某公司生產(chǎn)某種產(chǎn)品的速度為千克/小時(shí),每小時(shí)可獲得的利潤(rùn)是元,其中.

1)要使生產(chǎn)該產(chǎn)品每小時(shí)獲得的利潤(rùn)為60元,求每小時(shí)生產(chǎn)多少千克?

2)要使生產(chǎn)400千克該產(chǎn)品獲得的利潤(rùn)最大,問:此公司每小時(shí)應(yīng)生產(chǎn)多少千克產(chǎn)品?并求出最大利潤(rùn).

【答案】1)每小時(shí)生產(chǎn)4千克(2)每小時(shí)生產(chǎn)6千克時(shí),獲得的最大利潤(rùn)為6025

【解析】

1)先閱讀題意,再列方程求解即可;

2)結(jié)合二次函數(shù)最值的求法,配方求解即可.

解:(1)當(dāng)每小時(shí)可獲得的利潤(rùn)60元時(shí),

,所以又因?yàn)?/span>,

所以,

答:每小時(shí)生產(chǎn)4千克,利潤(rùn)為60元;

2)設(shè)生產(chǎn)400千克的產(chǎn)品獲得的利潤(rùn)為元,

,

當(dāng)時(shí),即,可知,所以當(dāng)時(shí),,

答:要使生產(chǎn)400千克該產(chǎn)品獲得的利潤(rùn)最大,該廠應(yīng)選每小時(shí)生產(chǎn)6千克時(shí),獲得的最大利潤(rùn)為6025元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,不過坐標(biāo)原點(diǎn)的直線交于,兩點(diǎn).

(Ⅰ)若,證明:直線過定點(diǎn);

(Ⅱ)設(shè)過且與相切的直線為,過且與相切的直線為.當(dāng)交于點(diǎn)時(shí),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記函數(shù)的極值點(diǎn)為,若,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)內(nèi)只取到一個(gè)最大值和一個(gè)最小值,且當(dāng)時(shí),;當(dāng)時(shí),.

(1)求函數(shù)的解析式.

(2)求函數(shù)的單調(diào)遞增區(qū)間.

(3)是否存在實(shí)數(shù),滿足不等式?若存在,求出的范圍(或值);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中是實(shí)數(shù)。設(shè), 為該函數(shù)圖象上的兩點(diǎn),且,若函數(shù)的圖象在點(diǎn)處的切線重合,則的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)求證:若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】423日是世界讀書日,某中學(xué)開展了一系列的讀書教育活動(dòng).學(xué)校為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個(gè)讀書小組(每名學(xué)生只能參加一個(gè)讀書小組)學(xué)生抽取12名學(xué)生參加問卷調(diào)查.各組人數(shù)統(tǒng)計(jì)如下:

小組

人數(shù)

12

9

6

9

1)從參加問卷調(diào)查的12名學(xué)生中隨機(jī)抽取2人,求這2人來(lái)自同一個(gè)小組的概率;

2)從已抽取的甲、丙兩個(gè)小組的學(xué)生中隨機(jī)抽取2人,用表示抽得甲組學(xué)生的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓

(1)若直線過點(diǎn)且被圓截得的弦長(zhǎng)為2,求直線的方程;

(2)從圓外一點(diǎn)向圓引一條切線,切點(diǎn)為為坐標(biāo)原點(diǎn),滿足,求點(diǎn)的軌跡方程及的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),函數(shù)(xR).

(1) 求函數(shù)的單調(diào)區(qū)間;

(2) 若函數(shù)有極大值32,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案