3.如果數(shù)據(jù)x1,x2,…xn的平均數(shù)是 2,方差是3,則2x1+3,2x2+3…,2xn+3的平均數(shù)和方差分別是( 。
A.4與3B.7和3C.7和12D.4和 12

分析 由平均數(shù)和方差的性質得數(shù)據(jù)2x1+3,2x2+3,2x3+3,…,2xn+3的平均數(shù)為2$\overline{x}$+3,方差為22•s2

解答 解:∵x1,x2,x3,…,xn的平均數(shù)為2,
∴2x1+3,2x2+3…,2xn+3的平均數(shù)是2×2+3=7,
∵x1,x2,x3,…,xn的方差為3,
∴2x1+3,2x2+3…,2xn+3的方差是3×22=12.
故選:C.

點評 本題考查一組數(shù)據(jù)的平均數(shù)、方差的求法,是基礎題,解題時要認真審題,注意平均數(shù)、方差性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=loga(2x-3)(a>0且a≠1),
(1)求f(x)函數(shù)的定義域;
(2)求使f(x)>0成立的x的取值范圍;
(3)當x∈[2,5],求f(x)函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在長為10cm的線段AB上任取一點G,用AG為半徑作圓,則圓的面積介于36π cm2到64π cm2的概率是(  )
A.$\frac{1}{5}$B.$\frac{1}{10}$C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.雙曲線3x2-y2=k的焦距是8,則k的值為(  )
A.±12B.12C.±48D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知雙曲線C與橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1共焦點,且它們的離心率之和為$\frac{24}{5}$,求雙曲線C的標準方程及其漸進線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在一個不透明的箱子里放有四個質地相同的小球,四個小球標的號碼分別為1,1,2,3.現(xiàn)甲、乙兩位同學依次從箱子里隨機摸取一個球出來,記下號碼并放回.
(Ⅰ)求甲、乙兩位同學所摸的球號碼相同的概率;
(Ⅱ)求甲所摸的球號碼大于乙所摸的球號碼的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=$\sqrt{{x^2}-4}$的單調遞增區(qū)間是( 。
A.(-∞,0)B.(0,+∞)C.(-∞,-2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.直線$\sqrt{2}$x+$\sqrt{6}$y+1=0的傾斜角是(  )
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.(1)已知f(x)是一次函數(shù),且滿足f[f(x)]=4x+3,求函數(shù)f(x)的解析式.
(2)計算64${\;}^{-\frac{1}{3}}$-(-$\frac{3\sqrt{2}}{2}$)0+[(2)-3]${\;}^{\frac{4}{3}}$+16-0.75

查看答案和解析>>

同步練習冊答案