13.已知函數(shù)f(x)=loga(2x-3)(a>0且a≠1),
(1)求f(x)函數(shù)的定義域;
(2)求使f(x)>0成立的x的取值范圍;
(3)當(dāng)x∈[2,5],求f(x)函數(shù)的值域.

分析 (1)求定義域只有滿足2x-3>0即可;
(2)分a>1或0<a<1來分別求解,
(3)根據(jù)x的取值范圍,先求2x-3的取值范圍,然后在討論a求函數(shù)的值域.

解答 解:(1)要使f(x)=loga(2x-3)有意義,只要
2x-3>0,解得x>log23,
故f(x)的定義域為(log23,+∞);
(2)當(dāng)a>1時,有2x-3>1,解得x>2;
當(dāng)0<a<1時,有0<2x-3<1,解得log23<x<2;
(3)當(dāng)x∈[2,5]時,
∴1≤2x-3≤29,
當(dāng)a>1時,f(x)函數(shù)的值域為:[0,loga29],
當(dāng)0<a<1時,f(x)函數(shù)的值域:[loga29,0]

點評 本題主要考查函數(shù)的定義域,函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.我縣2014年末汽車保有量為2萬輛,預(yù)計此后每年報廢上年末汽車保有量的5%,并且每年新增汽車數(shù)量相同,為保護全縣環(huán)境,緩解交通壓力,要求我縣汽車保有量不超過5萬輛,那么每年新增汽車數(shù)量不應(yīng)超過多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{f_1}(x),x∈[0,\frac{1}{2})}\\{{f_2}(x),x∈[\frac{1}{2},1]}\end{array}}$,其中f1(x)=-2(x-$\frac{1}{2}$)2+1;f2(x)=-2x+2,若x0∈[0,$\frac{1}{2}$),x1=f(x0),f(x1)=x0,則x0=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=4${\;}^{(co{s^2}x)}}$+4${\;}^{(si{n^2}x)}}$,則f(x)的最小值等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解下列不等式:
(1)2<|2x-5|≤7;        
(2)$\frac{1}{x-1}$>x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.f(x)的定義域為[-2,3],則f(2x+1)的定義域為[-$\frac{3}{2}$,1](用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow a$=(1,m),$\overrightarrow b$=(m,2),若$\overrightarrow a$⊥$\overrightarrow b$,則m=0;若$\overrightarrow a$∥$\overrightarrow b$,則m=$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和為Sn,且Sn=$\frac{n^2}{2}$+$\frac{3n}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=an+2-an+$\frac{1}{{{a_{n+2}}•{a_n}}}$,且數(shù)列{bn}的前n項和為Tn,求證:Tn<2n+$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如果數(shù)據(jù)x1,x2,…xn的平均數(shù)是 2,方差是3,則2x1+3,2x2+3…,2xn+3的平均數(shù)和方差分別是( 。
A.4與3B.7和3C.7和12D.4和 12

查看答案和解析>>

同步練習(xí)冊答案