某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,數(shù)據(jù)如下表:
認(rèn)為作業(yè)多認(rèn)為作業(yè)不多總數(shù)
喜歡玩電腦游戲18927
不喜歡玩電腦游戲81523
總數(shù)262450
請(qǐng)計(jì)算出K2,參照附表,得到的正確結(jié)論是( 。
附表:
P(K2≥k)0.0500.0250.0100.001
k3.8415.0246.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,n=a+b+c+d.
A、有99%的把握認(rèn)為“喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系”
B、有97.5%的把握認(rèn)為“喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少無(wú)關(guān)系”
C、在犯錯(cuò)誤的概率不超過(guò)2.5%的前提下,認(rèn)為“喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少無(wú)關(guān)系”
D、在犯錯(cuò)誤的概率不超過(guò)2.5%的前提下,認(rèn)為“喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系”
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:代入K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
求出值,查表比較下結(jié)論.
解答: 解:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
=
50×(18×15-8×9)2
26×24×27×23
≈5.086>5.024,
故在犯錯(cuò)誤的概率不超過(guò)2.5%的前提下,認(rèn)為“喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系”.
故選:D.
點(diǎn)評(píng):本題考查了獨(dú)立性檢驗(yàn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=|tanx|的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:區(qū)間[x1,x2](x1<x2)的長(zhǎng)度為x2-x1,已知函數(shù)y=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,2],則區(qū)間[a,b]的長(zhǎng)度的最大值與最小值的差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量序列:a1,a2,a3,…,an,…滿足如下條件:|a1|=4|d|=2,2a1•d=-1且an-an-1=d(n=1,2,3,4,…).則|a1|,|a2|,|a3|,…,|an|,…中第
 
項(xiàng)最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著緩緩爬行的烏龜,驕傲起來(lái),睡了一覺(jué).當(dāng)它醒來(lái)時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到了終點(diǎn).用S1和S2分別表示烏龜和兔子經(jīng)過(guò)時(shí)間t所行的路程,則下列圖象中與故事情節(jié)相吻合的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x+xlnx的單調(diào)遞減區(qū)間是( 。
A、(e-2,+∞)
B、(0,e-2
C、(-∞,e-2
D、(e2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一只小蜜蜂在邊長(zhǎng)為4的正三角形內(nèi)爬行,某時(shí)刻此小蜜蜂距三角形三個(gè)頂點(diǎn)的距離均超過(guò)2的概率為( 。
A、1-
3
π
6
B、1-
3
π
12
C、
3
π
6
D、
3
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin2x,x∈R,則f(x)是(  )
A、最小正周期為π的奇函數(shù)
B、最小正周期為π的偶函數(shù)
C、最小正周期為
π
2
的奇函數(shù)
D、最小正周期為
π
2
的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于每一個(gè)實(shí)數(shù)x,f(x)是y=-x2+4和y=3x這兩個(gè)函數(shù)中較小者,則f(x)的最大值是( 。
A、3B、4C、0D、-4

查看答案和解析>>

同步練習(xí)冊(cè)答案