7.已知函數(shù)f(x)=a+bcosx+csinx的圖象經(jīng)過點A(0,1)及B($\frac{π}{2}$,1).
(1)已知b>0,求f(x)的單調(diào)遞減區(qū)間;
(2)已知x∈(0,$\frac{π}{2}$)時,|f(x)|≤2恒成立,求實數(shù)a的取值范圍.

分析 由已知列式得到b,c與a的關(guān)系,把函數(shù)解析式用含有a的代數(shù)式表示.
(1)直接利用與正弦函數(shù)有關(guān)的復(fù)合函數(shù)的單調(diào)性求得f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)sin(x+$\frac{π}{4}$)=t,則y=$\sqrt{2}(1-a)t+a$,由x得范圍得到t的范圍,然后對1-a>0、1-a=0、1-a<0分類討論求解得答案.

解答 解:由題意可得,$\left\{\begin{array}{l}{f(0)=a+b=1}\\{f(\frac{π}{2})=a+c=1}\end{array}\right.$,則b=c=1-a,
∴f(x)=(1-a)(sinx+cosx)+a=$\sqrt{2}(1-a)sin(x+\frac{π}{4})+a$.
(1)∵1-a=b>0,由$2kπ+\frac{π}{2}≤x+\frac{π}{4}≤2kπ+\frac{3π}{2}$,得:
$2kπ+\frac{π}{4}≤x≤2kπ+\frac{5π}{4},k∈Z$,
∴f(x)的遞減區(qū)間為[$2kπ+\frac{π}{4},2kπ+\frac{5π}{4}$],k∈Z;
(2)設(shè)sin(x+$\frac{π}{4}$)=t,則y=$\sqrt{2}(1-a)t+a$,
∵x∈(0,$\frac{π}{2}$),∴x+$\frac{π}{4}∈$($\frac{π}{4},\frac{3π}{4}$),則t∈($\frac{\sqrt{2}}{2},1$],
①當1-a>0時,f(x)∈(1,$\sqrt{2}(1-a)+a$],此時|f(x)|≤2恒成立,只需$\sqrt{2}(1-a)+a≤2$,得a∈[$-\sqrt{2}$,1);
②當1-a=0時,f(x)=1,滿足題意;
②當1-a<0時,f(x)∈[$\sqrt{2}(1-a)+a,1$),此時|f(x)|≤2恒成立,只需$\sqrt{2}(1-a)+a≥-2$,得a∈(1,4+3$\sqrt{2}$].
綜上所述,a的取值范圍為[$-\sqrt{2},4+3\sqrt{2}$].

點評 本題考查三角函數(shù)值的恒等變換應(yīng)用,考查y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),訓(xùn)練了函數(shù)恒成立問題的求解方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)g(x)為奇函數(shù),f(x)=g(x)+2x,若f(-2)=4,求f(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(x)的定義域為D,若?x∈D,?y∈D,使得f(y)=-f(x)成立,則稱函數(shù)f(x)為“美麗函數(shù)”.下列所給出的五個函數(shù):
①y=x2;②y=$\frac{1}{x-1}$;③f(x)=ln(2x+3);④y=2x+3;⑤y=2sin x-1.
其中是“美麗函數(shù)”的序號有②③④ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某學(xué)生去書店,發(fā)現(xiàn)三本好書,決定至少買其中一本,則該生的購書方案有( 。┓N.
A.3B.5C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.給出下列命題:
(1)?x∈(0,$\frac{π}{2}$),sinx>x;
(2)?x0∈R,使得sinx0+cosx0=$\sqrt{2}$;
(3)?x∈(0,1),ex<$\frac{1}{1-x}$;
(4)?x0∈R,使得lnx0=x0-1.
其中真命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}滿足a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,則an=$\frac{1}{3n-2}$,,若bn=anan+1,則bn的前n項和為$\frac{n}{3n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知$\overrightarrow a$=(3,2),$\overrightarrow b$=(-1,2),$\overrightarrow c$=(5,6).
(1)求$3\overrightarrow a$+$\overrightarrow b$-2$\overrightarrow c$;
(2)求滿足$\overrightarrow c$=m$\overrightarrow a$+n$\overrightarrow b$的實數(shù)m,n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在平面直角坐標系中,點A的坐標是(2,0),O是原點,在直線l:y=-$\frac{1}{2}$x+2上求點Q,使得△QOA是以O(shè)為頂點的等腰三角形,則Q點坐標為(0,2)或($\frac{8}{5}$,$\frac{6}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,分別記錄了3月1日至3月5日的每天晝夜溫差(℃)與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù)(顆)如表:
日   期3月1日3月2日3月3日3月4日3月5日
溫差x(°C)101113128
發(fā)芽數(shù)y(顆)2325302616
(Ⅰ)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率;
(Ⅱ)請根據(jù)3月2日至3月4日的數(shù)據(jù),求發(fā)芽數(shù)y關(guān)于晝夜溫差x的線性回歸方程$\hat y$=$\hat b$x+$\hat a$.
參考公式:回歸直線的方程是$\hat y$=$\hat b$x+$\hat a$,其中$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{(x_i^{\;}-\overline x)}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}$.

查看答案和解析>>

同步練習(xí)冊答案