設(shè)點(diǎn)P(x,y)在平面區(qū)域
x+y≤3
x-y≥-1
y≥1
,則z=4x+2y
最大值為
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值.
解答: 解:作出不等式對(duì)應(yīng)的平面區(qū)域(陰影部分),
由z=4x+2y,得y=-2x+
z
2
,
平移直線y=-2x+
z
2
,由圖象可知當(dāng)直線y=-2x+
z
2
經(jīng)過點(diǎn)A時(shí),直線y=-2x+
z
2
的截距最大,此時(shí)z最大.
y=1
x+y=3
,得
x=2
y=1
,
即A(2,1),此時(shí)z的最大值為z=4×2+2×1=10,
故答案為:10.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log
1
2
3,b=(
1
3
)0.2,c=2
1
3
,則( 。
A、a>b>c
B、b>a>c
C、b>c>a
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為(x-2)2+(y-1)2=25,A(3,4)為定點(diǎn),過A的兩條弦MN、PQ互相垂直,記四邊形MPNQ面積的最大值與最小值分別為S1,S2,則
S
2
1
-
S
2
2
是( 。
A、200B、100
C、64D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果直線x+2y-1=0和kx-y-3=0互相平行,則實(shí)數(shù)k的值為( 。
A、-
1
2
B、-2
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=logax(a>0,a≠1),且f(3)-f(2)=1.
(1)若f(3m-2)<f(2m+5),求實(shí)數(shù)m的取值范圍;
(2)求使f(x-
2
x
)=log
3
2
7
2
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以點(diǎn)C(t,
2
t
) (t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M、N,若OM=ON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+ax+b(a,b∈R),若0≤f(0)≤
1
4
,-
1
4
≤f(1)≤
5
4
,則以a,b為坐標(biāo)的點(diǎn)P(a,b)所構(gòu)成的圖形面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計(jì)算多項(xiàng)式f(x)=1+8x+7x2+5x4+4x5+3x6在x=5時(shí)所對(duì)應(yīng)的v4的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某空間幾何體的三視圖如圖所示,則該幾何體的體積是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案