設(shè)函數(shù)f(x)=x2+ax+b(a,b∈R),若0≤f(0)≤
1
4
,-
1
4
≤f(1)≤
5
4
,則以a,b為坐標的點P(a,b)所構(gòu)成的圖形面積是
 
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:由題意可得
0≤b≤
1
4
-
1
4
≤a+b+1≤
5
4
,畫出(a,b)所在的區(qū)域,即平行四邊形ABCD,從而求得它的面積
解答: 解:由題意可得
0≤b≤
1
4
-
1
4
≤a+b+1≤
5
4
,即
0≤b≤
1
4
-
5
4
≤a+b≤
1
4

畫出(a,b)所在的區(qū)域,如圖所示:平行四邊形ABCD,
它的面積等于CD×
1
4
=[
1
4
-(-
5
4
)
1
4
=
3
8
,
故答案為
3
8
點評:本題主要考查二次函數(shù)的性質(zhì),不等式表示的區(qū)域,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某早餐店的早點銷售價格如下:
飲料 豆?jié){ 牛奶
單價 1元 2.5元 1元
面食 油條 面包 包子
單價 1元 4元 1元
假設(shè)小明的早餐搭配為一杯飲料和一個面食.
(1)求小明的早餐價格最多為3元的概率;
(2)求小明不喝牛奶且不吃油條的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

到點A(1,1,1)、B(-1,-1,-1)的距離相等的點C(x,y,z)的坐標滿足(  )
A、x+y+z=-1
B、x+y+z=0
C、x+y+z=1
D、x+y+z=3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)點P(x,y)在平面區(qū)域
x+y≤3
x-y≥-1
y≥1
,則z=4x+2y
最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前項和Sn=2n2+3n-1,求該數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式2x-y+5>0表示的區(qū)域在直線2x-y+5=0的( 。
A、右上方B、右下方
C、左上方D、左下方

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x萬件,需另投入的成本為C(x)(單位:萬元),當年產(chǎn)量小于80萬件時,C(x)=
1
3
x2+10x;當年產(chǎn)量不小于80萬件時,C(x)=51x+
10000
x
-1450.假設(shè)每萬件該產(chǎn)品的售價為50萬元,且該廠當年生產(chǎn)的該產(chǎn)品能全部銷售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少萬件時,該廠在該產(chǎn)品的生產(chǎn)中所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費用y(萬元),有如下的統(tǒng)計資料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
由資料可知y對x呈線性相關(guān)關(guān)系,且線性回歸方程為
?
y
=bx+a
,其中已知b=1.23,請估計使用年限為20年時,維修費用約為( 。
A、26.75
B、24.68
C、23.52
D、22.45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知∠AOB=
π
3
,動點P是∠AOB內(nèi)的點,PM⊥OA于M,PN⊥OB于N,若四邊形OMPN的面積等于
3
,則線段OP的長度的最小值等于
 

查看答案和解析>>

同步練習冊答案