19.若函數(shù)f(x)=2lnx-ax在區(qū)間[2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.[0,+∞)B.(-∞,0]C.(-∞,1]D.[1,+∞)

分析 求出函數(shù)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為則$\frac{2}{x}$-a≥0在區(qū)間[2,+∞)恒成立,求出a的范圍即可.

解答 解:∵f(x)=2lnx-ax,(x>0),
∴f′(x)=$\frac{2}{x}$-a,
若函數(shù)f(x)=2lnx-ax在區(qū)間[2,+∞)上單調(diào)遞增,
則$\frac{2}{x}$-a≥0在區(qū)間[2,+∞)恒成立,
即a≤1,
故選:C.

點(diǎn)評(píng) 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的單調(diào)性的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.圓柱挖去兩個(gè)全等的圓錐所得幾何體的三視圖如圖所示,則其表面積為( 。
A.30πB.48πC.66πD.78π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{a}{x-1},x≤0}\\{lgx,x>0}\end{array}\right.$,其中a≠0.若f(x)=0,則x=1;若方程f(f(x))=0有唯一解,則實(shí)數(shù)a的取值范圍是(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.一半徑為R的半球挖去一圓柱后的幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{{80\sqrt{5}π}}{3}$-16πB.$\frac{{160\sqrt{5}π}}{3}$-16πC.$\frac{{80\sqrt{5}π}}{3}$-8πD.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,AB=BC=2,CD=SD=1,側(cè)面SAB為等邊三角形.
(1)證明:AB⊥SD;
(2)求二面角A-SB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=lnx-x.
(1)求f(x)的單調(diào)區(qū)間;
(2)已知數(shù)列{an}的通項(xiàng)公式為an=1+$\frac{1}{{2}^{n}}$(n∈N*),求證:a1a2a3…an<e(e為自然對(duì)數(shù)的底數(shù));
(3)若k<$\frac{xf(x)+{x}^{2}}{x-1}$對(duì)任意x>2恒成立,求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某三棱錐的三視圖如圖所示,則該三棱錐的外接球的體積是( 。
A.$\frac{4π}{3}$B.$\frac{8π}{3}$C.$\frac{{5\sqrt{5}π}}{6}$D.$\sqrt{5}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知$\frac{1+tan(θ+720°)}{1-tan(θ-360°)}$=3+2$\sqrt{2}$,求:[cos2(π-θ)+sin(π+θ)•cos(π-θ)+2sin2(θ-π)]•$\frac{1}{co{s}^{2}(-θ-2π)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.給出下列三個(gè)命題:
①“若x2+2x-3≠0,則x≠-3”為假命題;
②若p∨q為真命題,則p,q均為真命題;
③命題p:?x∈R,3x>0,則¬p:?x0∈R,3${\;}^{{x}_{0}}$≤0.
其中正確的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案