10.已知數(shù)列{an}滿足an-an+1=an+1an(n∈N*),數(shù)列{bn}滿足${b_n}=\frac{1}{a_n}$,且b1+b2+…+b10=65,則an=$\frac{1}{n+1}$.

分析 數(shù)列{an}滿足an-an+1=an+1an(n∈N*),$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,可得bn+1-bn=1,再利用等差數(shù)列的通項公式與求和公式即可得出.

解答 解:∵數(shù)列{an}滿足an-an+1=an+1an(n∈N*),∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,
即bn+1-bn=1,
∴數(shù)列{bn}為等差數(shù)列,公差為1,又b1+b2+…+b10=65,
∴10b1+$\frac{10×9}{2}$×1=65,解得b1=2.
∴bn=2+(n-1)=n+1=$\frac{1}{{a}_{n}}$,解得an=$\frac{1}{n+1}$.
故答案為:$\frac{1}{n+1}$.

點評 本題考查了等差數(shù)列的通項公式與求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax-lnx.
(1)過原點O作曲線y=f(x)的切線,求切點的橫坐標(biāo);
(2)對?x∈[1,+∞),不等式f(x)≥a(2x-x2),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,求a,b的值;
(2)當(dāng)a2=4b時,求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.圓的一條直徑的兩個端點是(2,0),(0,2)時,則此圓的方程是(  )
A.(x-2)2+(y-1)2=1B.(x-1)2+(y-1)2=2C.(x-1)2+(y+1)2=9D.(x+2)2+(y+1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知動圓P過點A(2,0),且在y軸上截得的弦長為4.
(1)求動圓圓心P的軌跡C的方程;
(2)設(shè)A(x1,y1),B(x2,y2)是曲線C上兩個動點,其中x1≠x2,且x1+x2=4,線段AB的垂直平分線l與x軸相交于點Q,求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$=1|,$\overrightarrow{a}$•$\overrightarrow$=1,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$,則|$\overrightarrow$|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.以下三個命題中,真命題的個數(shù)有(  )個
①若$\frac{1}{a}$<$\frac{1}$,則a<b;②若a>b>c,則a|c|>b|c|;③函數(shù)f(x)=x+$\frac{1}{x}$有最小值2.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,∠ABC=90°,AB∥CD,AB=AD=2,CD=1,側(cè)面PAD⊥底面ABCD,且△PAD是以AD為底的等腰三角形
(1)證明:AD⊥PB;
(2)若三棱錐C-PBD的體積等于$\frac{1}{2}$,問:是否存在過點C的平面CMN,分別交PB、AB于點M,N,使得平面CMN∥平面PAD?若存在,求出△CMN的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列滿足條件的圓的方程
(1)圓心為C(2,-2)且過點P(6,3)的圓的方程
(2)己知點A(-4,-5),B(6,-1),求以線段AB為直徑的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案