15.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$=1|,$\overrightarrow{a}$•$\overrightarrow$=1,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$,則|$\overrightarrow$|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 根據(jù)條件,對(duì)$|\overrightarrow{a}+\overrightarrow|=\sqrt{5}$兩邊平方便可求出${\overrightarrow}^{2}$的值,進(jìn)而求出$|\overrightarrow|$的值.

解答 解:根據(jù)條件,
$(\overrightarrow{a}+\overrightarrow)^{2}={\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=$1+2+{\overrightarrow}^{2}=5$;
∴${\overrightarrow}^{2}=2$;
∴$|\overrightarrow|=\sqrt{2}$.
故選B.

點(diǎn)評(píng) 考查數(shù)量積的運(yùn)算,以及數(shù)量積的計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某三棱錐的三視圖如圖所示,則該三棱錐中最長(zhǎng)棱的長(zhǎng)度為( 。
A.$\sqrt{5}$B.$\sqrt{6}$C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)點(diǎn)$A(-2,\sqrt{3})$,B(2,0),點(diǎn)M在橢圓$\frac{x^2}{16}+\frac{y^2}{12}=1$上運(yùn)動(dòng),當(dāng)|MA|+|MB|最大時(shí),點(diǎn)M的坐標(biāo)為8+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x2-2x+2與函數(shù)$g(x)=-{x^2}+ax+b-\frac{1}{2}$的一個(gè)交點(diǎn)為P,以P為切點(diǎn)分別作函數(shù)f(x),g(x)的切線l1,l2,若l1⊥l2,則ab的最大值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}滿足an-an+1=an+1an(n∈N*),數(shù)列{bn}滿足${b_n}=\frac{1}{a_n}$,且b1+b2+…+b10=65,則an=$\frac{1}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.新學(xué)年伊始,附中社團(tuán)開始招新.某高一新生對(duì)“大觀天文社”、“理科學(xué)社”、“水墨霓裳社”很感興趣.假設(shè)他能被這三個(gè)社團(tuán)接受的概率分別為$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{3}$.
(1)求此新生被兩個(gè)社團(tuán)接受的概率;
(2)設(shè)此新生最終參加的社團(tuán)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,在直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=BC=1,點(diǎn)E為AD邊上的中點(diǎn),過點(diǎn)D作DF∥BC交AB于點(diǎn)F,現(xiàn)將此直角梯形沿DF折起,使得A-FD-B為直二面角,如圖乙所示.
(1)求證:AB∥平面CEF;
(2)若AF=$\sqrt{3}$,求點(diǎn)A到平面CEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a,b∈R+,求證:a2+2b2>2ab+4b-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.不等式x2-2x-3<0成立的充要條件是x∈(-1,3).

查看答案和解析>>

同步練習(xí)冊(cè)答案