9.已知函數(shù)f(x)=sin2x-2$\sqrt{3}$sin2x,求f(x)的最小正周期及在區(qū)間[0,$\frac{2π}{3}$]上的最小值.

分析 利用二倍角的余弦公式變形,兩角差的正弦公式化簡解析式,由三角函數(shù)的周期公式求出f(x)的最小正周期,由x的范圍和正弦函數(shù)的圖象與性質(zhì),求出f(x)在區(qū)間[0,$\frac{2π}{3}$]上的最小值.

解答 解:由題意得,f(x)=sin2x-2$\sqrt{3}$sin2x
=sin2x-$\sqrt{3}$(1-cos2x)=sin2x+$\sqrt{3}$cos2x-$\sqrt{3}$
=$2sin(2x+\frac{π}{3})-\sqrt{3}$,
由T=$\frac{2π}{2}=π$得,f(x)的最小正周期是π,
由$x∈[0,\frac{2π}{3}]$得,$2x+\frac{π}{3}∈[\frac{π}{3},π]$,
則$sin(2x+\frac{π}{3})∈[\frac{\sqrt{3}}{2},1]$,
即$2sin(2x-\frac{π}{3})-\sqrt{3}∈[0,2-\sqrt{3}]$,
所以f(x)在區(qū)間[0,$\frac{2π}{3}$]上的最小值是0.

點評 本題考查正弦函數(shù)的圖象與性質(zhì),二倍角的余弦公式變形、兩角差的正弦公式,以及三角函數(shù)的周期公式,考查化簡、變形能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.5名同學(xué)分別報名參加學(xué)校的排球隊、足球隊、籃球隊、乒乓球隊,每人限報其中的一個運動隊,不同報法的種數(shù)是( 。
A.$A_5^4$B.54C.45D.4×5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=4sin($\frac{x}{3}$+$\frac{π}{6}$),f(3α+π)=$\frac{16}{5}$,f(3β+$\frac{5π}{2}$)=-$\frac{20}{13}$,其中α,β∈[0,$\frac{π}{2}$],則cos(α-β)的值為( 。
A.$\frac{13}{65}$B.$\frac{15}{65}$C.$\frac{48}{65}$D.$\frac{63}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面直角坐標系xOy中,已知直線l:ax+y+3=0,點A(0,1),若直線l上存在點M,滿足|MA|=2,則實數(shù)a的取值范圍是a≤-$\sqrt{3}$或a≥$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)a、b、c成等比數(shù)列,非零實數(shù)x,y分別是a與b,b與c的等差中項.
(1)已知 ①a=1、b=2、c=4,試計算$\frac{a}{x}+\frac{c}{y}$的值;
②a=-1、b=$\frac{1}{3}$、c=-$\frac{1}{9}$,試計算$\frac{a}{x}+\frac{c}{y}$的值
(2)試推測$\frac{a}{x}+\frac{c}{y}$與2的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,BC=3,CA=5,AB=7,則$\overrightarrow{AC}$•$\overrightarrow{CB}$的值為$\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,最小值是2的是( 。
A.y=$x+\frac{1}{x}$B.y=$\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$
C.y=$\sqrt{{x^2}+4}+\frac{1}{{\sqrt{{x^2}+4}}}$D.y=log3x+logx3$\begin{array}{l}{\;}{(x>0,x≠1)}\end{array}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x+$\frac{m}{x}$+2(m為實常數(shù)).
(1)若函數(shù)f(x)圖象上動點P到定點Q(0,2)的距離的最小值為$\sqrt{2}$,求實數(shù)m的值;
(2)設(shè)m<0,若不等式f(x)≤kx在x∈[$\frac{1}{2}$,1]時有解,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若(2x-$\frac{a}{x}$)6的展開式中常數(shù)項為160,則a的值為-1.

查看答案和解析>>

同步練習冊答案