8.已知集合A={x|x2-4x<0},B={x|x<a},若A⊆B,則實(shí)數(shù)a的取值范圍是(  )
A.(0,4]B.(-∞,4)C.[4,+∞)D.(4,+∞)

分析 利用一元二次不等式可化簡(jiǎn)集合A,再利用A⊆B即可得出.

解答 解:對(duì)于集合A={x|x2-4x<0},由x2-4x<0,解得0<x<4;
又B={x|x<a},
∵A⊆B,
∴a≥4.
∴實(shí)數(shù)a的取值范圍是a≥4.
故選C.

點(diǎn)評(píng) 本題考查了一元二次不等式的解法、集合之間的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.定義在R上的函數(shù)f(x),如果存在函數(shù)g(x)=ax+b,(a,b為常數(shù)),使得f(x)≥g(x)
對(duì)一切實(shí)數(shù)x都成立,則稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).給出如下命題:
①函數(shù)g(x)=-2是函數(shù)$f(x)=\left\{\begin{array}{l}lnx,x>0\\ 1,x≤0\end{array}\right.$的一個(gè)承托函數(shù);
②函數(shù)g(x)=x-1是函數(shù)f(x)=x+sinx的一個(gè)承托函數(shù);
③若函數(shù)g(x)=ax是函數(shù)f(x)=ex的一個(gè)承托函數(shù),則a的取值范圍是[0,e];
④值域是R的函數(shù)f(x)不存在承托函數(shù).
其中正確的命題的個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=$\sqrt{x+1}$+lg(6-3x)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)$f(x)=\frac{a^x}{{{a^x}+1}}+btanx+{x^2}$(a>0,a≠1),若f(1)=3,則f(-1)等于( 。
A.-3B.-1C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)$f(x)=\frac{x^3}{cosx}$的定義域?yàn)?({-\frac{π}{2},\frac{π}{2}})$,當(dāng)$|{x_i}|<\frac{π}{2}$(i=1,2,3)時(shí),若x1+x2>0,x2+x3>0,x1+x3>0,則有f(x1)+f(x2)+f(x3)的值( 。
A.恒小于零B.恒等于零
C.恒大于零D.可能大于零,也可能小于零

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.100B.82C.96D.112

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.半徑為2的球內(nèi)有一底面邊長(zhǎng)為2的內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直底面),則當(dāng)該正四棱柱的側(cè)面積最大時(shí)球的表面積與該正四棱柱的側(cè)面積之差是( 。
A.$16({π-\sqrt{3}})$B.$16({π-\sqrt{2}})$C.$8({2π-3\sqrt{2}})$D.$8({2π-\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{a-{e}^{x}}{1+a{e}^{x}}$(a為常數(shù)且a>0)在定義域上為奇函數(shù),則函數(shù)f(x)的值域?yàn)椋?1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.方程$({1-x})sinπx=\frac{1}{2}({-2≤x≤4})$的所有解之和等于( 。
A.0B.4C.8D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案