分析 (1)問題轉(zhuǎn)化為|x-1|<|x-2|,然后求解不等式即可.
(2)利用條件說明{y|y=f(x)}⊆{y|y=g(x)},通過函數(shù)的最值,列出不等式求解即可
解答 解:(1)由g(x)<|x-2|+2,得:|x-1|<|x-2|,
兩邊平方得:x2-2x+1<x2-4x+4,
解得:x<$\frac{3}{2}$,
故不等式的解集是{x|x<$\frac{3}{2}$};
(2)因為任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,
所以{y|y=f(x)}⊆{y|y=g(x)},
又f(x)=|2x-a|+|2x+3|≥|(2x-a)-(2x+3)|=|a+3|,
g(x)=|x-1|+2≥2,所以|a+3|≥2,解得a≥-1或a≤-5,
所以實數(shù)a的取值范圍為a≥-1或a≤-5.
點評 本題考查函數(shù)的恒成立,絕對值不等式的解法,考查分析問題解決問題的能力以及轉(zhuǎn)化思想的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+2$\sqrt{3}$+$\sqrt{6}$ | B. | 4+2$\sqrt{3}$+$\sqrt{6}$ | C. | 4+4$\sqrt{3}$+$\sqrt{6}$ | D. | 2+$\sqrt{3}$+$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,2) | C. | (-∞,0) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | cosx-2x | B. | cosx-2x•ln2 | C. | -cosx+2x | D. | -cosx-2x•ln2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com