已知函數(shù)f(x)=ax+x2-xlna(a>0,a≠1).
(1)當(dāng)a>1時,求證:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(2)若函數(shù)y=|f(x)-t|-1有三個零點,求t的值;
(3)若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍;
(3)過坐標(biāo)原點作曲線的切線,證明:切點的橫坐標(biāo)為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),。
(1)求函數(shù)的解析式;
(2)若對于任意,都有成立,求實數(shù)的取值范圍;
(3)設(shè),,且,求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個不同的實根,求實數(shù)的值;
(3)數(shù)列滿足,,求的整數(shù)部分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3-ax-1.
(1)若a=3時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)在實數(shù)集R上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a,使f(x)在(-1,1)上單調(diào)遞減?若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某一運動物體,在x(s)時離出發(fā)點的距離(單位:m)是f(x)=x3+x2+2x.
(1)求在第1s內(nèi)的平均速度;
(2)求在1s末的瞬時速度;
(3)經(jīng)過多少時間該物體的運動速度達(dá)到14m/s?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函數(shù)f(x)的極大值;
(2)若x=1是函數(shù)f(x)的一個極值點.
①試用a表示b;
②設(shè)a>0,函數(shù)g(x)=(a2+14)ex+4.若?ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=m(x-1)2-2x+3+ln x,m≥1.
(1)當(dāng)m=時,求函數(shù)f(x)在區(qū)間[1,3]上的極小值;
(2)求證:函數(shù)f(x)存在單調(diào)遞減區(qū)間[a,b];
(3)是否存在實數(shù)m,使曲線C:y=f(x)在點P(1,1)處的切線l與曲線C有且只有一個公共點?若存在,求出實數(shù)m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)L為曲線C:y=在點(1,0)處的切線.
(1)求L的方程;
(2)證明:除切點(1,0)之外,曲線C在直線L的下方.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com