10.已知sinα+cosα=$\frac{1}{2}$,求下列各式的值:
(1)sinαcosα;
(2)sin3α+cos3α

分析 (1)已知等式兩邊平方,利用完全平方公式及同角三角函數(shù)間基本關(guān)系化簡(jiǎn),整理即可求出原式的值;
(2)原式利用立方和公式變形,將各自的值代入計(jì)算即可求出值.

解答 解:(1)把sinα+cosα=$\frac{1}{2}$兩邊平方得:
(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+2sinαcosα=$\frac{1}{4}$,
則sinαcosα=-$\frac{3}{8}$;
(2)原式=(sinα+cosα)(sin2α-sinαcosα+cos2α)=(sinα+cosα)(1-sinαcosα)=$\frac{11}{16}$.

點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}中對(duì)于任意正整數(shù)n都有an+1=${a}_{n}^{2}$+can,其中c為實(shí)常數(shù).
(Ⅰ)若c=2,a1=1,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若c=0,記Tn=(a1-a2)a3+(a2-a3)a4+…+(an-an+1)an+2,證明:
1)當(dāng)0<a1≤$\frac{1}{2}$時(shí),Tn<$\frac{1}{32}$;
2)當(dāng)$\frac{1}{2}$<a1<1時(shí),Tn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}$ax2+4x-lnx.
(1)當(dāng)a=-3時(shí),求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≠0時(shí),若f(x)是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{x+2,x≤0}\end{array}\right.$,若關(guān)于x的方程f2(x)-af(x)+b=0有6個(gè)不同的解,則a的取值范圍為(  )
A.(0,3)B.(0,4)C.(0,4]D.[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若x2+4y2=5,則x+y的最小值為$-\frac{5}{2}$,最小值點(diǎn)為(-2,$-\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,已知拋物線C:y2=4x的焦點(diǎn)是F,直線l經(jīng)過(guò)點(diǎn)F交拋物線C于A,B兩點(diǎn),A點(diǎn)在x軸下方,點(diǎn)D和點(diǎn)A關(guān)于x軸對(duì)稱(chēng).
(1)若$\overrightarrow{BF}$=4$\overrightarrow{FA}$,求直線l的方程;
(2)求S2△OAF+S2△OBD的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(cosx,-sinx).
(1)若函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$+1,求函數(shù)f(x)的周期和最值;
(2)若$\overrightarrow{a}$∥$\overrightarrow$,且x∈[$\frac{π}{6}$,$\frac{2π}{3}$],求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{x}$-alnx(a∈R).
(Ⅰ)若h(x)=f(x)-2x,當(dāng)a=-3時(shí),求h(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)有唯一的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若關(guān)于x的方程sinx+$\sqrt{3}$cosx+a=0在(0,2π)內(nèi)有兩個(gè)不同的實(shí)數(shù)根α,β,求實(shí)數(shù)a的取值范圍及相應(yīng)的α+β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案