A. | [-$\frac{1}{3}$,$\frac{1}{2}$] | B. | [-$\frac{2}{3}$,-$\frac{1}{2}$] | C. | [-$\frac{2}{3}$,$\frac{1}{2}$] | D. | [-$\frac{2}{3}$,$\frac{2}{3}$] |
分析 直線l:x+my+m=0經(jīng)過定點(diǎn)M(0,-1),利用斜率計(jì)算公式可得:kMP,kMQ,利用斜率的意義即可得出.
解答 解:直線l:x+my+m=0經(jīng)過定點(diǎn)M(0,-1),
kMP=$\frac{-1-1}{0-(-1)}$=-2,kMQ=$\frac{-1-2}{0-2}$=$\frac{3}{2}$,
∴m≠0,-$\frac{1}{m}$≥$\frac{3}{2}$,且$-\frac{1}{m}$≤-2,
解得$-\frac{2}{3}$≤m$≤\frac{1}{2}$,m≠0.
m=0時(shí)也滿足條件.
綜上可得:實(shí)數(shù)m的取值范圍是$-\frac{2}{3}$≤m$≤\frac{1}{2}$,
故選:C.
點(diǎn)評 本題考查了直線經(jīng)過定點(diǎn)、斜率計(jì)算公式及其意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若f(x1)=f(x2),則x1+x2=kπ | |
B. | f(x)的圖象關(guān)于點(diǎn)$({-\frac{3π}{8},0})$對稱 | |
C. | f(x)的圖象關(guān)于直線$x=\frac{5π}{8}$對稱 | |
D. | f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位長度后得$g(x)=\sqrt{2}sin({2x+\frac{3π}{4}})$的圖象 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15π | B. | 17π | C. | 19π | D. | 21π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AB}•\overrightarrow{{A_1}{C_1}}={a^2}$ | B. | $\overrightarrow{AB}•\overrightarrow{A{C_1}}=\sqrt{2}{a^2}$ | C. | $\overrightarrow{AB}•\overrightarrow{AO}=\frac{{\sqrt{3}}}{2}{a^2}$ | D. | $\overrightarrow{BC}•\overrightarrow{D{A_1}}={a^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com