分析 求出三角形ABC的外心,利用球心到△ABC所在平面的距離為球半徑的一半,求出球的半徑,即可求出球的表面積.
解答 解:由題意AB=6,BC=8,AC=10,∵62+82=102,可知三角形是直角三角形,
三角形的外心是AC的中點(diǎn),球心到截面的距離就是球心與三角形外心的距離,
設(shè)球的半徑為R,球心到△ABC所在平面的距離為球半徑的一半,
所以R2=($\frac{1}{2}$R)2+52,
解得R2=$\frac{100}{3}$,
∴球的表面積為4πR2=$\frac{400}{3}$π.
故答案為:$\frac{400}{3}$π.
點(diǎn)評 本題是中檔題,考查球的內(nèi)接多面體,找出球的半徑滿足的條件是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{3}$,$\frac{1}{2}$] | B. | [-$\frac{2}{3}$,-$\frac{1}{2}$] | C. | [-$\frac{2}{3}$,$\frac{1}{2}$] | D. | [-$\frac{2}{3}$,$\frac{2}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{10}{11}$ | C. | $\frac{1}{11}$ | D. | $\frac{1}{110}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | π | C. | $\frac{3π}{2}$ | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com