20.函數(shù) f(x)=Acos(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R),其部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)當(dāng)x∈[0,π]時,求f(x)的取值范圍.

分析 (1)由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)f(x)的解析式.
(2)利用余弦函數(shù)的定義域和值域,求得f(x)的取值范圍.

解答 解:(1)根據(jù)函數(shù) f(x)=Acos(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R)的部分圖象,
可得A=1,$\frac{1}{4}•\frac{2π}{ω}$=$\frac{2π}{3}$-$\frac{π}{6}$,求得ω=1,再根據(jù)五點法作圖可得 $\frac{π}{6}$+φ=0,∴φ=-$\frac{π}{6}$,
故 f(x)=cos(x-$\frac{π}{6}$).
(2)當(dāng)x∈[0,π]時,x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],∴cos(x-$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],即f(x)∈[-$\frac{\sqrt{3}}{2}$,1].

點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值;還考查了余弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等比數(shù)列{an}的首項a1=2015,數(shù)列{an}前n項和記為Sn,前n項積記為Tn
(1)若${S_3}=\frac{6045}{4}$,求等比數(shù)列{an}的公比q;
(2)在(1)的條件下,判斷|Tn|與|Tn+1|的大。徊⑶髇為何值時,Tn取得最大值;
(3)在(1)的條件下,證明:若數(shù)列{an}中的任意相鄰三項按從小到大排列,則總可以使其
成等差數(shù)列;若所有這些等差數(shù)列的公差按從小到大的順序依次記為d1,d2,…,dn,則數(shù)列{dn}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在數(shù)列{an}中,a1=2,a17=66,通項公式是關(guān)于n的一次函數(shù).
(1)求數(shù)列{an}的通項公式;
(2)求a20的值;
(3)398是否為數(shù)列中的項?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.四位同學(xué)參加知識競賽,每位同學(xué)須從甲乙兩道題目中任選一道題目作答,答對甲可得60分,答錯甲得-60分,答對乙得180分,答錯乙得-180分,結(jié)果是這四位同學(xué)的總得分為0分,那么不同的得分情況共計有44種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.i2017=i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.cos2017°=( 。
A.-cos37°B.cos37°C.-cos53°D.cos53°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知拋物線y2=2px(p>0)上一點M (x0,4)到焦點F 的距離|MF|=$\frac{5}{4}$x0,則直線MF 的斜率kMF=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知${(2{x^2}-\frac{1}{x})^n}$的展開式二項式系數(shù)和比它的各項系數(shù)和大31.
(Ⅰ)求展開式中含有x4的項;
(Ⅱ)求展開式中二項式系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知z為純虛數(shù),且(2+i)z=1+ai3(i為虛數(shù)單位),則復(fù)數(shù)a+z在復(fù)平面內(nèi)對應(yīng)的點所在的象限為(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案