8.(1)求函數(shù)f(x)=x3-3x2-9x,x∈[-4,4]的最值
(2)求函數(shù)$g(x)=\frac{1}{2}{x^2}+4x-5lnx$的極值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值即可;
(2)求出g(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.

解答 解:(1)f(x)=x3-3x2-9x,
f′(x)=3x2-6x-9=3(x2-2x-3)=3(x-3)(x+1),
令f′(x)>0,解得:x>3或x<-1,
令f′(x)<0,解得:-1<x<3,
∴f(x)在[-4,-1)遞增,在(-1,3)遞減,在(3,4]遞增,
而f(-4)=-76,f(-1)=5,f(3)=-27,f(4)=-30,
∴f(x)min=f(-4)=-76,f(x)max=f(-1)=5,
(2)$g(x)=\frac{1}{2}{x^2}+4x-5lnx$,定義域是(0,+∞),
g′(x)=x+4-$\frac{5}{x}$=$\frac{(x+5)(x-1)}{x}$,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:x<1,
∴g(x)在(0,1)遞減,在(1,+∞)遞增,
∴$x=1時f(x)有極小值f(1)=\frac{9}{2},f(x)無極大值$.

點評 本題考查了函數(shù)的單調(diào)性、最值、極值問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.有三張卡片的正、反兩面分別寫有數(shù)字0和1,2和3,4和5,某同學(xué)用它們來拼一個三位偶數(shù),不同的個數(shù)為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)Sn為等差數(shù)列{an}的前n項和,若a3+a4+a5+a6=36,則S8=72.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知log189=a,18b=5,用a、b表示log645.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù) f (x)=sinx-xcosx.現(xiàn)有下列結(jié)論:
①?x∈[0,π],f(x)≥0;
②若0<x1<x2<π,則$\frac{{x}_{1}}{{x}_{2}}$<$\frac{{sin{x_1}}}{{sin{x_2}}}$;
③若a<$\frac{sinx}{x}$<b對?x∈[0,$\frac{π}{2}$]恒成立,則 a的最大值為$\frac{2}{π}$,b 的最小值為1.
其中正確結(jié)論的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}({a+1}){x^2}$+ax+1.
(1)討論f(x)在其定義域上的單調(diào)性;
(2)當(dāng)x∈[0,1]時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知幾何體P-ABCD如圖,面ABCD為矩形,面ABCD⊥面PAB,且面PAB為正三角形,若AB=2,AD=1,E、F分別為AC、BP中點,
(Ⅰ)求證:EF∥面PCD;
(Ⅱ)求直線BP與面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.拋物線y2=2nx(n<0)與雙曲線$\frac{x^2}{4}$-$\frac{y^2}{m^2}$=1有一個相同的焦點,則動點(m,n)的軌跡是(  )
A.橢圓的一部分B.雙曲線的一部分C.拋物線的一部分D.直線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)l,m是兩條不同的直線,α,β是兩個不同的平面,則下列命題為真命題的序號是(3)
(1)若m∥l,m∥α,則l∥α;
(2)若m⊥α,l⊥m,則l∥α;
(3)若α∥β,l⊥α,m∥β,則l⊥m;
(4)若m?α,m∥β,l?β,l∥α,則α∥β

查看答案和解析>>

同步練習(xí)冊答案