13.已知函數(shù)f(x)=-x+xlnx
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若y=f(x)-m-1在定義域內(nèi)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

分析 (1)求出導(dǎo)函數(shù),利用導(dǎo)函數(shù)的符號(hào),求解函數(shù)的單調(diào)區(qū)間.
(2)y=f(x)-m-1在(0,+∞)內(nèi)有兩個(gè)不同的零點(diǎn),可轉(zhuǎn)化為f(x)=m+1在(0,+∞)內(nèi)有兩個(gè)不同的根,可轉(zhuǎn)化為y=f(x)與y=m+1圖象上有兩個(gè)不同的交點(diǎn),畫出函數(shù)的圖圖象,判斷求解即可.

解答 解:(1)f'(x)=lnx,令f'(x)>0,解得x>1;
令f'(x)<0,解得0<x<1;
∴f(x)的增區(qū)間為(1,+∞),減區(qū)間為(0,1)
(2)y=f(x)-m-1在(0,+∞)內(nèi)有兩個(gè)不同的零點(diǎn),
可轉(zhuǎn)化為f(x)=m+1在(0,+∞)內(nèi)有兩個(gè)不同的根,
也可轉(zhuǎn)化為y=f(x)與y=m+1圖象上有兩個(gè)不同的交點(diǎn),
由(Ⅰ)知,f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
f(x)min=f(1)=-1,
由題意得,m+1>-1即m>-2①,
由圖象可知,m+1<0,即m<-1②,
由①②可得-2<m<-1.

點(diǎn)評(píng) 本題函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的單調(diào)性以及函數(shù)的圖象,考查數(shù)形結(jié)合以及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.復(fù)平面內(nèi),|z+1|=2 表示的圖形的面積是4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知曲線y=2x2+1過點(diǎn)(1,3),則該曲線在該點(diǎn)處的切線方程為(  )
A.y=-4x-1B.y=4x-1C.y=4x-11D.y=-4x+7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.?dāng)?shù)列{an}中,a1=$\frac{1}{2}$,前n項(xiàng)和Sn=n2an,求an=( 。
A.$\frac{1}{n(n-1)}$B.$\frac{1}{n(n+1)}$C.$\frac{2}{{{{(n+1)}^2}}}$D.$\frac{3}{(n+1)(n+2)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}的前n項(xiàng)和Sn=n2+2n-1(n∈N*),則a1=2;數(shù)列{an}的通項(xiàng)公式為an=$\left\{\begin{array}{l}{2,n'=1}\\{2n+1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S3=3a3+2a2,a4=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列bn=log2an,數(shù)列{bn}的前n項(xiàng)和為Tn,求使得Tn取最大值的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.sin135°=( 。
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.彈簧上掛著的小球做上下振動(dòng)時(shí),小球離開平衡位置的位移y(單位:cm)隨時(shí)間t(單位:s)的變化曲線如圖所示,則小球在開始振動(dòng)(即t=0)時(shí)離開平衡位置的位移是3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若f(x)=ex•ln3x,則f'(x)=ex•ln3x+$\frac{1}{x}$•ex

查看答案和解析>>

同步練習(xí)冊(cè)答案