1.?dāng)?shù)列{an}中,a1=$\frac{1}{2}$,前n項和Sn=n2an,求an=( 。
A.$\frac{1}{n(n-1)}$B.$\frac{1}{n(n+1)}$C.$\frac{2}{{{{(n+1)}^2}}}$D.$\frac{3}{(n+1)(n+2)}$

分析 由an=Sn-Sn-1可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,使用累乘法即可得出an

解答 解:∵Sn=n2an,∴Sn-1=(n-1)2an-1,(n≥2)
兩式相減得:an=n2an-(n-1)2an-1,
∴(n2-1)an=(n-1)2an-1,即(n+1)an=(n-1)an-1,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,
∴$\frac{{a}_{n}}{{a}_{1}}$=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$=$\frac{n-1}{n+1}$•$\frac{n-2}{n}$•$\frac{n-3}{n-1}$•…$\frac{1}{3}$=$\frac{2}{n(n+1)}$,
∴an=$\frac{2}{n(n+1)}$a1=$\frac{1}{n(n+1)}$.
當(dāng)n=1時,上式也成立.
故an=$\frac{1}{n(n+1)}$.
故選:B.

點評 本題考查了數(shù)列的通項公式的求法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知定義域在R上的函數(shù)f(x)滿足f(x+1)+f(1-x)=2,當(dāng)x>1時,f(x)=$\frac{1}{x-1}$,則關(guān)于x的方程f(x)+2a=0沒有負(fù)實根時實數(shù)a的取值范圍是( 。
A.(-∞,-1]∪[$-\frac{1}{2}$,+∞)B.(0,1)C.(-1,$-\frac{1}{2}$,)∪($-\frac{1}{2}$,+∞)D.(-2,$-\frac{1}{2}$)∪($-\frac{1}{2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=-x3+3x2+a.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)y=x+$\frac{9}{x+2}$,x∈(-2,+∞),則該函數(shù)的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在圓內(nèi)接△ABC,A,B,C所對的邊分別為a,b,c,滿足acosC+ccosA=2bcosB.
(1)求B的大;
(2)若點D是劣弧$\widehat{AC}$上一點,AB=3,BC=2,AD=1,求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知A(-2,0),B(0,-2),C(cosφ,sinφ),其中0<φ<π.
(Ⅰ)若$\overrightarrow{AC}$•$\overrightarrow{BC}$=$\frac{5}{3}$,求sin2φ的值;
(Ⅱ)若|$\overrightarrow{OA}$+$\overrightarrow{OC}$|=$\sqrt{3}$,求$\overrightarrow{OB}$與$\overrightarrow{OC}$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=-x+xlnx
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若y=f(x)-m-1在定義域內(nèi)有兩個不同的零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.( I)設(shè)復(fù)數(shù)z和它的共軛復(fù)數(shù)$\overline z$滿足$4z+2\overline z=3\sqrt{3}+i$,求復(fù)數(shù)z.
(Ⅱ)設(shè)復(fù)數(shù)z滿足|z+2|+|z-2|=8,求復(fù)數(shù)z對應(yīng)的點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)全集U=R,A={x|$\frac{1}{4}$≤2x<8},B={x|y=$\sqrt{2-x}$}.
(Ⅰ)求A∩B;
(Ⅱ)若C={x|x2-2(a+3)+a(a+6)<0},∁UA∪C=R,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案