(2012•道里區(qū)三模)已知函數(shù)f(x)=
kx+1,x≤0
lnx,x>0
,則下列關于函數(shù)y=f[f(x)]+1的零點個數(shù)的判斷正確的是( 。
分析:因為函數(shù)f(x)為分段函數(shù),函數(shù)y=f(f(x))+1為復合函數(shù),故需要分類討論,確定函數(shù)y=f(f(x))+1的解析式,從而可得函數(shù)y=f(f(x))+1的零點個數(shù);
解答:解:解:分四種情況討論.
(1)x>1時,lnx>0,∴y=f(f(x))+1=ln(lnx)+1,此時的零點為x=e
1
e
>1;
(2)0<x<1時,lnx<0,∴y=f(f(x))+1=klnx+1,則k>0時,有一個零點,k<0時,klnx+1>0沒有零點;
(3)若x<0,kx+1≤0時,y=f(f(x))+1=k2x+k+1,則k>0時,kx≤-1,k2x≤-k,可得k2x+k≤0,y有一個零點,
若k<0時,則k2x+k≥0,y沒有零點,
(4)若x<0,kx+1>0時,y=f(f(x))+1=ln(kx+1)+1,則k>0時,即y=0可得kx+1=
1
e
,y有一個零點,k<0時kx>0,y沒有零點,
綜上可知,當k>0時,有4個零點;當k<0時,有1個零點;
故選B;
點評:本題考查分段函數(shù),考查復合函數(shù)的零點,解題的關鍵是分類討論確定函數(shù)y=f(f(x))+1的解析式,考查學生的分析能力,是一道中檔題;
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•道里區(qū)三模)如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點E在棱PB上.
(Ⅰ)求證:平面AEC⊥平面PDB;
(Ⅱ)當PD=
2
AB
,且直線AE與平面PBD成角為45°時,確定點E的位置,即求出
PE
EB
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•道里區(qū)三模)在△ABC中,角A、B、C所對的邊分別為a、b、c,且acosB-bcosA=
1
2
c
,當tan(A-B)取最大值時,角C的值為
π
2
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•道里區(qū)三模)如圖,設D是圖中邊長分別為1和2的矩形區(qū)域,E是D內位于函數(shù)y=
1
x
(x>0)圖象下方的區(qū)域(陰影部分),從D內隨機取一個點M,則點M取自E內的概率為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•道里區(qū)三模)已知復數(shù)z1=1-
3
i
,z2=2
3
-2i
,則
.
z1
.
z2
等于( 。

查看答案和解析>>

同步練習冊答案