9.設(shè)數(shù)列{an}滿足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n}{3}(n∈{N^*})$
(1)求an;
(2)設(shè)${b_n}=\frac{n}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Sn

分析 (1)數(shù)列{an}滿足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n}{3}(n∈{N^*})$,n≥2時(shí),a1+3a2+…+3n-2•an-1=$\frac{n-1}{3}$.相減可得an,驗(yàn)證n=1時(shí)是否成立.
(2)${b_n}=\frac{n}{a_n}$=n•3n,利用錯(cuò)位相減法可得數(shù)列{bn}的前n項(xiàng)和Sn

解答 解:(1)數(shù)列{an}滿足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n}{3}(n∈{N^*})$,
n≥2時(shí),a1+3a2+…+3n-2•an-1=$\frac{n-1}{3}$.
∴3n-1an=$\frac{1}{3}$,解得an=$\frac{1}{{3}^{n}}$.
n=1時(shí),a1=$\frac{1}{3}$,頁滿足上式.
∴${a_n}=\frac{1}{3^n}$.
(2)${b_n}=\frac{n}{a_n}$=n•3n,
∴數(shù)列{bn}的前n項(xiàng)和Sn=3+2•32+3•33+…+n•3n,
3Sn=32=2•33+…+(n-1)•3n+n•3n+1
∴-2Sn=3+32+…+3n-n•3n+1=$\frac{3({3}^{n}-1)}{3-1}$-n•3n+1
∴${S_n}=(\frac{n}{2}-\frac{1}{4}){3^{n+1}}+\frac{3}{4}$.

點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式與求和公式、錯(cuò)位相減法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x-6,則f(f(2))=( 。
A.-$\frac{23}{4}$B.$\frac{23}{4}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)曲線y=xn+1(n∈N+)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則log2017x1+log2017x2+…+log2017x2016的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某公司的研發(fā)團(tuán)隊(duì),可以進(jìn)行A、B、C三種新產(chǎn)品的研發(fā),研發(fā)成功的概率分別為P(A)=$\frac{4}{5}$,P(B)=$\frac{2}{3}$,P(C)=$\frac{1}{2}$,三個(gè)產(chǎn)品的研發(fā)相互獨(dú)立.
(1)求該公司恰有兩個(gè)產(chǎn)品研發(fā)成功的概率;
(2)已知A、B、C三種產(chǎn)品研發(fā)成功后帶來的產(chǎn)品收益(單位:萬元)分別為1000、2000、1100,為了收益最大化,公司從中選擇兩個(gè)產(chǎn)品研發(fā),請你從數(shù)學(xué)期望的角度來考慮應(yīng)該研發(fā)哪兩個(gè)產(chǎn)品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等差數(shù)列{an}中,a1<0,S18=S36,若Sn最小,則n的值為( 。
A.18B.27C.36D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.曲線$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}$(θ為參數(shù))上的點(diǎn)與定點(diǎn)A(-1,-1)距離的最小值是$\sqrt{5}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的前5項(xiàng)和為105,且a10=2a5,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點(diǎn)P(-3,5),Q(2,1),向量$\overrightarrow m=({-λ,1})$,若$\overrightarrow{PQ}∥\overrightarrow m$,則實(shí)數(shù)λ等于( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{5}{4}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)y=f(x)在定義域內(nèi)可導(dǎo),它的圖象如下圖所示,則它的導(dǎo)函數(shù)y=f'(x)圖象可能為(  ) 
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案