20.已知a>0,函數(shù)f(x)=x3-ax在[1,+∞)上是單調(diào)遞增函數(shù),則a的取值范圍是(0,3].

分析 求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系轉(zhuǎn)化為f′(x)≥0在[1,+∞)上恒成立即可.

解答 解:∵函數(shù)f(x)=x3-ax在[1,+∞)上是單調(diào)遞增函數(shù),
∴f′(x)≥0在[1,+∞)上恒成立,
即f′(x)=3x2-a≥0在[1,+∞)上恒成立,
即a≤3x2在[1,+∞)上恒成立,
∵3x2≥3,
∴0<a≤3,
即實(shí)數(shù)a的取值范圍是(0,3],
故答案為:(0,3].

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的應(yīng)用,求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系轉(zhuǎn)化f′(x)≥0恒成立是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知平面向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(x,-3),且$\overrightarrow a$∥$\overrightarrow b$,則|$\overrightarrow a$+2$\overrightarrow b}$|=( 。
A.10B.$\sqrt{5}$C.5D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若三點(diǎn)A(3,3),B(a,0).C(0,b)(ab≠0)共線,則log3($\frac{1}{a}$+$\frac{1}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.計(jì)算:
(1)已知tanα=3,求$\frac{2cosα}{sinα+cosα}$的值;
(2)3${\;}^{lo{g}_{3}4}$-27${\;}^{\frac{2}{3}}$-lg0.01+lne3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了解某市高三學(xué)生身高情況,對(duì)全市高三學(xué)生進(jìn)行了測(cè)量,經(jīng)分析,全市高三學(xué)生身高X(單位:cm)服從正態(tài)分布N(160,ξ2),已知P(X<150)=0.2,P(X≥180)=0.03.
(1)現(xiàn)從該市高三學(xué)生中隨機(jī)抽取一位學(xué)生,求該學(xué)生身高在區(qū)間[170,180)的概率;
(2)現(xiàn)從該市高三學(xué)生中隨機(jī)抽取三位學(xué)生,記抽到的三位學(xué)生身高在區(qū)間[150,170)的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.岳陽市上年度水價(jià)為0.8元/噸.月用水量為a噸.本月計(jì)劃將水價(jià)降到0.55元/噸至0.75元/噸之間,而用戶期望的水價(jià)為0.4元/噸,經(jīng)測(cè)算,下調(diào)水價(jià)后新增的用水量與實(shí)際水價(jià)和用戶期望的水價(jià)的差成反比(比例系數(shù)為k)而我市水價(jià)的成本為0.3元/噸.
(1)寫出本月水價(jià)下調(diào)后,供水局的收益y與實(shí)際水價(jià)x的函數(shù)關(guān)系式;
(2)設(shè)k=0.2a,當(dāng)水價(jià)最低定為多少時(shí)仍舊可以保持供水局的收益比上年至少增加20%?(收益=實(shí)際用水量×(實(shí)際水價(jià)-成本價(jià))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(1)求證:平面PAB⊥平面ABCD;
(2)若PA=PB,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,D是邊AC的中點(diǎn),若A=$\frac{π}{3}$,cos∠BDC=-$\frac{2\sqrt{7}}{7}$,△ABC面積為3$\sqrt{3}$,則sin∠ABD=$\frac{3\sqrt{21}}{14}$,邊長(zhǎng)BC=2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.執(zhí)行如圖程序框圖,則輸出的A是$\frac{70}{29}$

查看答案和解析>>

同步練習(xí)冊(cè)答案