5.岳陽市上年度水價為0.8元/噸.月用水量為a噸.本月計劃將水價降到0.55元/噸至0.75元/噸之間,而用戶期望的水價為0.4元/噸,經(jīng)測算,下調(diào)水價后新增的用水量與實際水價和用戶期望的水價的差成反比(比例系數(shù)為k)而我市水價的成本為0.3元/噸.
(1)寫出本月水價下調(diào)后,供水局的收益y與實際水價x的函數(shù)關(guān)系式;
(2)設(shè)k=0.2a,當(dāng)水價最低定為多少時仍舊可以保持供水局的收益比上年至少增加20%?(收益=實際用水量×(實際水價-成本價)

分析 (1)先根據(jù)題意設(shè)下調(diào)后的水價為x元/kw•h,依題意知用電量增至$\frac{k}{x-0.4}$+a,即可計算收益;
(2)依題意:“水價最低定為多少時仍可保證供水局的收益比上年至少增長20%”得到關(guān)于x的不等關(guān)系,解此不等式即可得解.

解答 解:(1):設(shè)下調(diào)后的水價為x元/kw•h,依題意知用水量增至$\frac{k}{x-0.4}$+a,供水局的收益為:
y=($\frac{k}{x-0.4}$+a)(x-0.3),(0.55≤x≤0.75).
(2)依題意有$\left\{\begin{array}{l}{(\frac{0.2a}{x-0.4}+a)(x-0.3)≥[a×(0.8-0.3)](1+20%)}\\{0.55≤x≤0.75}\end{array}\right.$,
整理得$\left\{\begin{array}{l}{{x}^{2}-1.1x+0.3≥0}\\{0.55≤x≤0.75}\end{array}\right.$,
解此不等式得0.60≤x≤0.75,
答:當(dāng)水價最低定為0.6x元/kw•h仍可保證供水局的收益比上年至少增長20%.

點(diǎn)評 本小題主要考查建立函數(shù)關(guān)系、解不等式等基礎(chǔ)知識,考查綜合應(yīng)用數(shù)學(xué)知識、思想和方法解決實際問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.點(diǎn)C(4a+1,2a+1,2)在點(diǎn)P(1,0,0)、A(1,-3,2)、B(8,-1,4)確定的平面上,則a=$\frac{14}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列函數(shù)的定義域:
(1)y=log3$\frac{1}{2-x}$;
(2)y=$\sqrt{lgx}$+lg(5-3x);
(3)y=log(x-1)(2-x);
(4)y=$\sqrt{lo{g}_{2}(4x-3)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖1,在直角梯形EFBC中,F(xiàn)B∥EC,BF⊥EF,且EF=$\frac{1}{2}$FB=$\frac{1}{3}$EC=1,A為線段FB的中點(diǎn),AD⊥EC于D,沿邊AD將四邊形ADEF翻折,使平面ADEF與平面ABCD垂直,M為ED的中點(diǎn),如圖2.
(I)求證:BC⊥平面EDB;
(Ⅱ)求直線AM與平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知a>0,函數(shù)f(x)=x3-ax在[1,+∞)上是單調(diào)遞增函數(shù),則a的取值范圍是(0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在長方體ABCD-A1B1C1D1中,AA1=1,AB=AD=2,E,F(xiàn)分別是棱AB,BC的中點(diǎn).證明A1,C1,F(xiàn),E四點(diǎn)共面,并求直線CD1與平面A1C1FE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,空間幾何體ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.
(1)證明:AE∥平面BCD;
(2)若△ABC是邊長為2的正三角形,DE∥平面ABC,且AD與BD,CD所成角的余弦值均為$\frac{{\sqrt{2}}}{4}$,試問在CA上是否存在一點(diǎn)P,使得二面角P-BE-A的余弦值為$\frac{{\sqrt{10}}}{4}$.若存在,請確定點(diǎn)P的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,寫出程序框圖描述的算法的運(yùn)行結(jié)果( 。
A.-5B.5C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.點(diǎn)P(1,a)到直線x-2y+2=0的距離為$\frac{3\sqrt{5}}{5}$,且P在3x+y-3>0表示的區(qū)域內(nèi),則a=3.

查看答案和解析>>

同步練習(xí)冊答案