10.過(guò)點(diǎn)P(1,1)作直線l,分別交x,y正半軸于A,B兩點(diǎn).
(1)若直線l與直線x-3y+1=0垂直,求直線l的方程;
(2)若直線l在y軸上的截距是直線l在x軸上截距的2倍,求直線l的方程.

分析 (1)利用相互垂直的直線斜率之間的關(guān)系、點(diǎn)斜式即可得出.
(2)對(duì)直線l分類討論:經(jīng)過(guò)原點(diǎn)時(shí)直接得出;不經(jīng)過(guò)原點(diǎn)時(shí),設(shè)直線l:y-1=k(x-1)(k<0),可得y軸上的截距為:y=1-k,x軸上的截距為:$x=\frac{k-1}{k}$.由題意可得$1-k=2\frac{k-1}{k}$,解得k即可得出.

解答 解:(1)設(shè)直線l的斜率為k,∵直線l與直線x-3y+1=0垂直,
∴$\frac{1}{3}$k=-1,解得k=-3.
∴直線方程為y-1=-3(x-1),化為3x+y-4=0.
(2)經(jīng)過(guò)原點(diǎn)的直線:y=x也滿足條件.
直線l不經(jīng)過(guò)原點(diǎn)時(shí),設(shè)直線l:y-1=k(x-1)(k<0);
y軸上的截距為:y=1-k,x軸上的截距為:$x=\frac{k-1}{k}$.
∵$1-k=2\frac{k-1}{k}$,解得k=-2;
∴直線方程為:2x+y-3=0.
綜上可得:直線方程為:2x+y-3=0或y=x.

點(diǎn)評(píng) 本題考查了相互垂直的直線斜率之間的關(guān)系、點(diǎn)斜式、直線的截距,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知O是△ABC所在平面內(nèi)一點(diǎn),若對(duì)任意k∈R,恒有|$\overrightarrow{OA}$-$\overrightarrow{OB}$-k$\overrightarrow{BC}$|≥|$\overrightarrow{AO}$-$\overrightarrow{CO}$|,則△ABC一定是( 。
A.直角三角形B.鈍角三角形C.銳角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.我校要從參加數(shù)學(xué)競(jìng)賽的1000名學(xué)生中,隨機(jī)抽取50名學(xué)生的成績(jī)進(jìn)行分析,現(xiàn)將參加數(shù)學(xué)競(jìng)賽的1000名學(xué)生編號(hào)如下000,001,002,…,999,如果在第一組隨機(jī)抽取的一個(gè)號(hào)碼為015,則抽取的第40個(gè)號(hào)碼為795.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.三邊長(zhǎng)分別為1,1,$\sqrt{3}$的三角形的最大內(nèi)角的正弦值為( 。
A.$\frac{2}{3}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,角A,B,C的對(duì)邊為a,b,c,若b=$\sqrt{5}$,∠B=$\frac{π}{4}$,cosA=$\frac{{\sqrt{10}}}{10}$,則邊a等于( 。
A.1B.$\frac{5}{3}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.根據(jù)所給條件求下列直線的方程:
(1)經(jīng)過(guò)點(diǎn)Q(-1,3)且與直線x+2y-1=0垂直;
(2)經(jīng)過(guò)點(diǎn)N(-1,3)且在x軸的截距與它在y軸上的截距的和為零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.海南省椰樹集團(tuán)引進(jìn)德國(guó)凈水設(shè)備的使用年限(年)和所需要的維修費(fèi)用y(千元)的幾組統(tǒng)計(jì)數(shù)據(jù)如表:
x23456
y2.23.85.56.57.0
(Ⅰ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出$\widehaty$關(guān)于x的線性回歸方程$\widehaty$=$\hat b$x+$\hat a$;
(Ⅱ)我們把中(Ⅰ)的線性回歸方程記作模型一,觀察散點(diǎn)圖發(fā)現(xiàn)該組數(shù)據(jù)也可以用函數(shù)模型$\widehaty$=c1ln(c2x)擬合,記作模型二.經(jīng)計(jì)算模型二的相關(guān)指數(shù)R2=0.64,
①請(qǐng)說(shuō)明R2=0.64這一數(shù)據(jù)在線性回歸模型中的實(shí)際意義.
②計(jì)算模型一中的R2的值(精確到0.01),通過(guò)數(shù)據(jù)說(shuō)明,兩種模型中哪種模型的擬合效果好.
參考公式和數(shù)值:用最小工乘法求線性回歸方程系數(shù)公式$\widehatb$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$.R2=1-$\frac{{\sum_{i=1}^n{{{({y_i}-{{\widehaty}_i})}^2}}}}{{\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}$,$\sum_{i=1}^n{{{({y_i}-{{\widehaty}_i})}^2}}$=0.651,(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在Rt△AOB中,∠OAB=$\frac{π}{6}$,斜邊AB=4,Rt△AOC通過(guò)Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動(dòng)點(diǎn)D在斜邊AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當(dāng)D為AB的中點(diǎn)時(shí),求異面直線AO與CD所成角的正切值;
(Ⅲ)求CD與平面AOB所成角最大時(shí)該角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求由曲線y=x+1與x=1,x=3,y=0所圍的圖形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案