12.若實數(shù)x、y滿足|x|≤y≤1,則x2+y2+2x的最小值為(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$-1

分析 畫出約束條件表示的可行域,通過表達(dá)式的幾何意義,求出表達(dá)式的最小值.

解答 解:x,y滿足|x|≤y≤1,表示的可行域如圖:
x2+y2+2x=(x+1)2+y2-1它的幾何意義是可行域內(nèi)的點到(-1,0)的距離的平方減去1.
顯然D(-1,0)到直線x+y=0的距離最小,
最小值為:$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
所求表達(dá)式的最小值為:$\frac{1}{2}-1$=$-\frac{1}{2}$,
故選:B.

點評 本題考查線性規(guī)劃的簡單應(yīng)用,注意約束條件表示的可行域,以及所求表達(dá)式的幾何意義是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若命題p:“$?{x_0}∈R,{2^{x_0}}-2≤{a^2}-3a$”是假命題,則實數(shù)a的取值范圍是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥平面ABCD,BC=AP=5,AB=3,AC=4,M,N分別在線段AD,CP上,且$\frac{AM}{MD}$=$\frac{PN}{NC}$=4.
(Ⅰ)求證:MN∥平面PAB;
(Ⅱ)求三棱錐P-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知三棱柱ABC-A1B1C1中,AB=AC=AA1=2,側(cè)面ABB1A1⊥底面ABC,D是BC的中點,∠BAA1=120o,B1D⊥AB.
(Ⅰ)求證:AC⊥面ABB1A1;
(Ⅱ)求二面角C1-AD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示,已知$\overrightarrow{AC}=3\overrightarrow{BC}$,$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$,$\overrightarrow{OC}$=$\overrightarrow c$,則下列等式中成立的是(  )
A.$\overrightarrow c=\frac{3}{2}\overrightarrow b-\frac{1}{2}\overrightarrow a$B.$\overrightarrow c=2\overrightarrow b-\overrightarrow a$C.$\overrightarrow c=2\overrightarrow a-\overrightarrow b$D.$\overrightarrow c=\frac{3}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)短軸的端點P(0,b)、Q(0,-b),長軸的一個端點為M,AB為經(jīng)過橢圓中心且不在坐標(biāo)軸上的一條弦,若PA、PB的斜率之積等于-$\frac{1}{4}$,則P到直線QM的距離為$\frac{4\sqrt{5}b}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中為偶函數(shù)的是(  )
A.y=x2sinxB.y=2-xC.y=$\frac{sinx}{x}$D.y=|log0.5x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某同學(xué)一個學(xué)期內(nèi)各次數(shù)學(xué)測驗成績的莖葉圖如圖所示,則該組數(shù)據(jù)的中位數(shù)是83.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若點P(x,y)是區(qū)域$\left\{\begin{array}{l}1≤x+y≤3\\ 1≤y-x≤3\end{array}\right.$內(nèi)的任意一點,且為直線y=kx上的點,則實數(shù)k的取值范圍是( 。
A.$[-\frac{1}{2},\frac{1}{2}]$B.[-2,2]C.(-∞,-2]∪[2,+∞)D.$(-∞,-\frac{1}{2}]∪[\frac{1}{2},+∞)$

查看答案和解析>>

同步練習(xí)冊答案