A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$-1 |
分析 畫出約束條件表示的可行域,通過表達(dá)式的幾何意義,求出表達(dá)式的最小值.
解答 解:x,y滿足|x|≤y≤1,表示的可行域如圖:
x2+y2+2x=(x+1)2+y2-1它的幾何意義是可行域內(nèi)的點到(-1,0)的距離的平方減去1.
顯然D(-1,0)到直線x+y=0的距離最小,
最小值為:$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
所求表達(dá)式的最小值為:$\frac{1}{2}-1$=$-\frac{1}{2}$,
故選:B.
點評 本題考查線性規(guī)劃的簡單應(yīng)用,注意約束條件表示的可行域,以及所求表達(dá)式的幾何意義是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow c=\frac{3}{2}\overrightarrow b-\frac{1}{2}\overrightarrow a$ | B. | $\overrightarrow c=2\overrightarrow b-\overrightarrow a$ | C. | $\overrightarrow c=2\overrightarrow a-\overrightarrow b$ | D. | $\overrightarrow c=\frac{3}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2sinx | B. | y=2-x | C. | y=$\frac{sinx}{x}$ | D. | y=|log0.5x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-\frac{1}{2},\frac{1}{2}]$ | B. | [-2,2] | C. | (-∞,-2]∪[2,+∞) | D. | $(-∞,-\frac{1}{2}]∪[\frac{1}{2},+∞)$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com