4.點(diǎn)M是拋物線y2=x上的點(diǎn),點(diǎn)N是圓C:(x-3)2+y2=1上的點(diǎn),則|MN|的最小值是(  )
A.$\frac{\sqrt{11}}{2}$-1B.$\frac{\sqrt{10}}{2}$-1C.2D.$\sqrt{3}$-1

分析 設(shè)圓心為C,則|MN|=|CM|-|CN|=|CM|-1,將|MN|的最小問題,轉(zhuǎn)化為|CM|的最小問題即可.

解答 解:設(shè)圓心為C,則|MN|=|CM|-|CN|=|CM|-1,C點(diǎn)坐標(biāo)(3,0),
由于M在y2=x上,設(shè)M的坐標(biāo)為(y2,y),
∴|CM|=$\sqrt{({y}^{2}-3)^{2}+{y}^{2}}$=$\sqrt{({y}^{2}-\frac{5}{2})^{2}+\frac{11}{4}}$≥$\frac{\sqrt{11}}{2}$,
∵圓半徑為1,
所以|MN|最小值為$\frac{\sqrt{11}}{2}$-1.
故選A.

點(diǎn)評(píng) 本題重點(diǎn)考查圓與圓錐曲線的綜合,考查拋物線上的動(dòng)點(diǎn)和圓上的動(dòng)點(diǎn)間的距離的最小值,將|MN|的最小問題,轉(zhuǎn)化為|CM|的最小問題是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=1-2sin2x+2cos x的最小值和最大值分別為( 。
A.-1,1B.-$\frac{3}{2}$,-1C.-$\frac{3}{2}$,3D.-2,$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知F1、F2是橢圓$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1的焦點(diǎn),點(diǎn)P在橢圓上,若∠F1PF2=$\frac{π}{3}$,則△F1PF2的面積為$\frac{64\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.集合A={x|x2-5x+4≤0},B={x||2x-3|≤3},則A∩B=(  )
A.{x|0<x≤3}B.{x|1≤x≤3}C.{x|0≤x≤4}D.{x|1<x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C所對(duì)的邊是a,b,c,且滿足a2+c2-b2=ac.
(1)求角B的大;
(2)設(shè)$\overrightarrow{m}$=(-3,-1),$\overrightarrow{n}$=(sinA,cos2A),求$\overrightarrow{m}$•$\overrightarrow{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)與定點(diǎn)F(-1,0)的距離和它到定直線x=-2的距離之比是$\frac{\sqrt{2}}{2}$.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過F作曲線C的不垂直于y軸的弦AB,M為AB的中點(diǎn),直線OM與曲線C交于P,Q兩點(diǎn),求四邊形APBQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過x軸上一點(diǎn)P作x軸的垂線,分別交函數(shù)y=sinx,y=cosx,y=tanx的圖象于P1,P2,P3,若$\overrightarrow{P{P_3}}=\frac{3}{8}\overrightarrow{P{P_2}}$,則$|\overrightarrow{P{P_1}}|$=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如果函數(shù)y=sinωx•cosωx(ω>0)的最小正周期為4π,那么常數(shù)ω為( 。
A.$\frac{1}{4}$B.2C.$\frac{1}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過點(diǎn)(0,2),則C的方程為y2=4x或y2=16x.

查看答案和解析>>

同步練習(xí)冊(cè)答案