9.在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)與定點(diǎn)F(-1,0)的距離和它到定直線x=-2的距離之比是$\frac{\sqrt{2}}{2}$.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過F作曲線C的不垂直于y軸的弦AB,M為AB的中點(diǎn),直線OM與曲線C交于P,Q兩點(diǎn),求四邊形APBQ面積的最小值.

分析 (1)由題意列關(guān)于P的坐標(biāo)的函數(shù)關(guān)系式,整理可得動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)直線AB的方程為x=my-1,A(x1,y1),B(x2,y2),聯(lián)立直線系方程和橢圓方程,得到關(guān)于y的一元二次方程,利用根與系數(shù)的關(guān)系求得A、B中點(diǎn)的坐標(biāo),得到直線PQ的方程,求出|PQ|.設(shè)點(diǎn)A到直線PQ的距離為d,則點(diǎn)B到直線PQ的距離也為d,可得2d=$\frac{|m{x}_{1}+2{y}_{1}|+|m{x}_{2}+2{y}_{2}|}{\sqrt{{m}^{2}+4}}$.結(jié)合題意化簡(jiǎn)可得2d=$\frac{({m}^{2}+2)|{y}_{1}-{y}_{2}|}{\sqrt{{m}^{2}+4}}$.代入得2d=$\frac{2\sqrt{2}•\sqrt{1+{m}^{2}}}{\sqrt{{m}^{2}+4}}$.代入四邊形面積公式,換元后利用配方法求得四邊形APBQ面積的最大值.

解答 解:(1)由已知,得$\frac{{\sqrt{{{({x+1})}^2}+{y^2}}}}{{|{x+2}|}}=\frac{{\sqrt{2}}}{2}$.
兩邊平方,化簡(jiǎn)得$\frac{{x}^{2}}{2}+{y}^{2}=1$.
故軌跡C的方程是$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)∵AB不垂直于y軸,設(shè)直線AB的方程為x=my-1,A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得(m2+2)y2-2my-1=0.
y1+y2=$\frac{2m}{{m}^{2}+2}$,y1y2=$\frac{-1}{{m}^{2}+2}$.
x1+x2=m(y1+y2)-2=$\frac{-4}{{m}^{2}+2}$,于是AB的中點(diǎn)為M($-\frac{2}{{m}^{2}+2},\frac{m}{{m}^{2}+2}$),
故直線PQ的斜率為-$\frac{m}{2}$,PQ的方程為y=-$\frac{m}{2}$x,即mx+2y=0,
聯(lián)立$\left\{\begin{array}{l}y=-\frac{m}{2}x\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$,整理得:x2=$\frac{4}{2+{m}^{2}}$,|PQ|=$2\sqrt{{x^2}+{y^2}}=2\sqrt{\frac{{{m^2}+4}}{{{m^2}+2}}}$.
設(shè)點(diǎn)A到直線PQ的距離為d,則點(diǎn)B到直線PQ的距離也為d,
∴2d=$\frac{|m{x}_{1}+2{y}_{1}|+|m{x}_{2}+2{y}_{2}|}{\sqrt{{m}^{2}+4}}$.
∵點(diǎn)A,B在直線mx+2y=0的異側(cè),∴(mx1+2y1)(mx2+2y2)<0,
于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,從而2d=$\frac{({m}^{2}+2)|{y}_{1}-{y}_{2}|}{\sqrt{{m}^{2}+4}}$.
∵|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{2\sqrt{2}•\sqrt{1+{m}^{2}}}{{m}^{2}+2}$,
∴2d=$\frac{2\sqrt{2}•\sqrt{1+{m}^{2}}}{\sqrt{{m}^{2}+4}}$.
故四邊形APBQ的面積S=$\frac{1}{2}$|PQ|•2d=$\frac{1}{2}•2\sqrt{\frac{{{m^2}+4}}{{{m^2}+2}}}•\frac{{2\sqrt{2}\sqrt{1+{m^2}}}}{{\sqrt{{m^2}+4}}}=2\sqrt{2}\sqrt{\frac{{{m^2}+1}}{{{m^2}+2}}}$
=2$\sqrt{2}$$\sqrt{1-\frac{1}{2+{m}^{2}}}$≥2.
即m=0時(shí),Smin=2.

點(diǎn)評(píng) 本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了利用換元法求函數(shù)的最值,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|x>5},集合B={x|x>a},若命題“x∈A”是命題“x∈B”的充分不必要條件,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,5)B.(-∞,5]C.(5,+∞)D.[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若“0<x<1”是“(x-a)[x-(a+2)]<0”的充分不必要條件,則實(shí)數(shù)a的取值范圍是( 。
A.[-1,0]B.(-1,0)C.(-∞,0]∪[1,+∞)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若命題:“存在$x∈[\frac{π}{4},\frac{π}{3}]$,使tan2x-atanx-2<0成立”為假命題,則實(shí)數(shù)a的取值范圍為(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.點(diǎn)M是拋物線y2=x上的點(diǎn),點(diǎn)N是圓C:(x-3)2+y2=1上的點(diǎn),則|MN|的最小值是( 。
A.$\frac{\sqrt{11}}{2}$-1B.$\frac{\sqrt{10}}{2}$-1C.2D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=f(x)滿足對(duì)任意的x,y∈R,都有f(x+y)=f(x)•f(y),且f(1)=2,若g(x)是f(x)的反函數(shù)(注:互為反函數(shù)的函數(shù)圖象關(guān)于直線y=x對(duì)稱),則g(8)=( 。
A.3B.4C.16D.$\frac{1}{256}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,-m),且$\overrightarrow{a}⊥\overrightarrow$,則$|\overrightarrow a+\overrightarrow b|$=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)是一次函數(shù),且滿足3f(x+1)-f(x)=2x+9,則函數(shù)f(x)的解析式為( 。
A.f(x)=x+3B.f(x)=x-3C.f(x)=2x+3D.f(x)=2x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.下列說法正確的是①④
①已知定點(diǎn)F1(-1,0)、F2(1,0),則滿足||PF1|-|PF2||=3的動(dòng)點(diǎn)P的軌跡不存在;
②若動(dòng)點(diǎn)P到定點(diǎn)F的距離等于動(dòng)點(diǎn)P到定直線l的距離,則動(dòng)點(diǎn)P的軌跡為拋物線;
③命題“?x<0,都有x-x2<0”的否定為“?x0≥0,使得${x_0}-{x_0}^2≥0$”;
④已知定點(diǎn)F1(-2,0)、F2(2,0),則滿足|PF1|+|PF2|=4的動(dòng)點(diǎn)P的軌跡為線段F1F2
⑤$\frac{x^2}{m}-\frac{y^2}{n}=1({mn>0})$表示焦點(diǎn)在x軸上的雙曲線.

查看答案和解析>>

同步練習(xí)冊(cè)答案