15.在正方體ABCD-A1B1C1D1中,如圖.
(1)求證:平面AB1D1∥平面C1BD;
(2)若正方體棱長為1,求點A1到面AB1D1的距離.

分析 (1)推導(dǎo)出BD∥B1D1,DC1∥AB1,由此能證明平面AB1D1∥平面C1BD.
(2)設(shè)點A1到面AB1D1的距離為h.由${V}_{{A}_{1}-A{B}_{1}{D}_{1}}$=${V}_{A-{A}_{1}{B}_{1}{D}_{1}}$,能求出點A1到面AB1D1的距離.

解答 證明:(1)在正方體ABCD-A1B1C1D1中,
∵BD∥B1D1,DC1∥AB1,
BD∩DC1=D,D1B1∩AD1=D1,
BD,DC1?平面BDC1,D1B1,AB1?平面AB1D1,
∴平面AB1D1∥平面C1BD.
解:(2)設(shè)點A1到面AB1D1的距離為h.
∵正方體棱長為1,∴AB1=AD1=B1D1=$\sqrt{2}$,
∴${S}_{△A{B}_{1}{D}_{1}}$=$\frac{1}{2}×\sqrt{2}×\sqrt{2}×sin60°$=$\frac{\sqrt{3}}{2}$,
S${\;}_{△{A}_{1}{B}_{1}{D}_{1}}$=$\frac{1}{2}×1×1$=$\frac{1}{2}$,
∵${V}_{{A}_{1}-A{B}_{1}{D}_{1}}$=${V}_{A-{A}_{1}{B}_{1}{D}_{1}}$,
∴$\frac{1}{3}×h×{S}_{△A{B}_{1}{D}_{1}}$=$\frac{1}{3}×A{A}_{1}×{S}_{△{A}_{1}{B}_{1}{C}_{1}}$,
∴h=$\frac{A{A}_{1}×{S}_{△{A}_{1}{B}_{1}{D}_{1}}}{{S}_{△A{B}_{1}{D}_{1}}}$=$\frac{1×\frac{1}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}}{3}$.
∴點A1到面AB1D1的距離為$\frac{{\sqrt{3}}}{3}$.

點評 本題考查面面平行的證明,考查點到平面的距離的求法,考查推理論證能力、運算求解能力、空間想象能力,考查等價轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.用三段論推理:“任何實數(shù)的絕對值大于0,因為a是實數(shù),所以a的絕對值大于0”,你認為這個推理( 。
A.大前提錯誤B.小前提錯誤C.推理形式錯誤D.是正確的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設(shè)直線l過雙曲線C的一個焦點,且與C的一條對稱軸垂直,l與C交于A,B兩點,|AB|為C的實軸長的2倍,則C的離心率為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖在邊長為4的正方形鐵皮的四角切去相等的正方形,在把它的邊沿虛線折起,做成一個無蓋的方底盒子.
問:切去的小正方形邊長為多少時,盒子容積最大?最大容積V1是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若$|{\overrightarrow{e_1}}|=|{\overrightarrow{e_2}}|=1$,$cos<\overrightarrow{e_1},\overrightarrow{e_2}>=-\frac{1}{5}$,且$\overrightarrow a=2\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=\overrightarrow{e_1}+3\overrightarrow{e_2}$,則$\overrightarrow a•\overrightarrow b$=(  )
A.2B.-2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知命題$p:?{x_0}∈R,x_0^2+{x_0}-1<0$,則¬p為( 。
A.?x∈R,x2+x-1≥0B.$?{x_0}∈R,x_0^2+{x_0}-1>0$
C.$?{x_0}∉R,x_0^2+{x_0}-1≥0$D.?x∉R,x2+x-1>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.將函數(shù)f(x)=sin2x的圖象向右平移φ$({0<φ<\frac{π}{2}})$個單位后得到函數(shù)g(x)的圖象,若g(x)在區(qū)間$[{0,\frac{π}{6}}]$上單調(diào)遞增,且函數(shù)g(x)的最大負零點在區(qū)間$({-\frac{π}{3},-\frac{π}{6}})$上,則φ的取值范圍是( 。
A.[$\frac{π}{12}$,$\frac{π}{4}$]B.[$\frac{π}{6}$,$\frac{5π}{12}$)C.[$\frac{π}{6}$,$\frac{π}{3}$]D.($\frac{π}{6}$,$\frac{π}{4}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.冪函數(shù)f(x)=(m2-m-1)x-m在x∈(0,+∞)時為減函數(shù),則m的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設(shè)數(shù)列{an}滿足a1=2,a2=6,且an+2-2an+1+an=2,若[x]表示不超過x的最大整數(shù),則$[{\frac{2017}{a_1}+\frac{2017}{a_2}+…+\frac{2017}{{{a_{2017}}}}}]$=2016.

查看答案和解析>>

同步練習冊答案