15.已知下列命題(其中a,b為直線,α為平面):
①若一條直線垂直于平面內(nèi)無數(shù)條直線,則這條直線與這個(gè)平面垂直;
②若一條直線平行于一個(gè)平面,則垂直于這條直線的直線一定垂直于這個(gè)平面;
③若a∥α,b⊥α,則a⊥b;
④若a⊥b,則過b有惟一α與a垂直.
上述四個(gè)命題中,是真命題的有③④.(填序號(hào))

分析 ①平面內(nèi)無數(shù)條直線均為平行線時(shí),不能得出直線與這個(gè)平面垂直,故①錯(cuò)誤;②垂直于這條直線的直線與這個(gè)平面可以是任何的位置關(guān)系,故②錯(cuò)誤.若a∥α,b⊥α,則根據(jù)線面平行、垂直的性質(zhì),必有a⊥b.

解答 解:①平面內(nèi)無數(shù)條直線均為平行線時(shí),不能得出直線與這個(gè)平面垂直,將“無數(shù)條”改為“所有”才正確;故①錯(cuò)誤;
②垂直于這條直線的直線與這個(gè)平面可以是任何的位置關(guān)系,有可能是平行、相交、線在面內(nèi),故②錯(cuò)誤.
③若a∥α,b⊥α,則根據(jù)線面平行、垂直的性質(zhì),必有a⊥b,正確;
④若a⊥b,則過b有且只有一個(gè)平面與a垂直,顯然正確.
故答案為③④.

點(diǎn)評(píng) 本題考查空間的線面位置關(guān)系,考查空間想象能力和邏輯推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若橢圓$\frac{y^2}{16}+\frac{x^2}{9}=1和雙曲線\frac{y^2}{4}-\frac{x^2}{5}=1$的共同焦點(diǎn)為F1、F2,P是兩曲線的一個(gè)交點(diǎn),則|PF1|•|PF2|的值為( 。
A.12B.14C.3D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點(diǎn)M(x1,y1)在函數(shù)y=-2x+8的圖象上,當(dāng)x1∈[2,5]時(shí),則$\frac{{{y_1}+1}}{{{x_1}+1}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線l過點(diǎn)A(3,0),B(0,4),則直線l的方程為4x+3y-12=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(x,$\sqrt{3}$),$\overrightarrow$=(x,-$\sqrt{3}$),若(2$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則|$\overrightarrow{a}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(-$\frac{π}{6}$)的值為( 。
A.-1B.1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知命題p:若$\overrightarrow{a}$=(1,2)與$\overrightarrow$=(-2,λ)共線,則λ=-4,命題q:?k∈R,直線y=kx+1與圓x2+y2-2y=0相交,則命題“(¬p)∨q”“p∧(¬p)”“p∧q”“p∨q”中真命題的個(gè)數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,體積為$\frac{9}{4}$,底面是邊長為$\sqrt{3}$的正三角形.若P為底面A1B1C1的中心,則PA與平面ABC所成角的大小為( 。
A.120°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知tanα=-$\frac{3}{4}$,tan(π-β)=$\frac{1}{2}$,則tan(α-β)的值為(  )
A.-$\frac{2}{11}$B.$\frac{2}{11}$C.$\frac{11}{2}$D.-$\frac{11}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案