【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間與極值.
(2)當(dāng)時,是否存在,使得成立?若存在,求實數(shù)的取值范圍,若不存在,請說明理由.
【答案】(1)分類討論,詳見解析;(2).
【解析】
(1)求出函數(shù)的定義域,接著求導(dǎo),對參數(shù)分類討論。
(2)假設(shè)存在,使得成立,則對,滿足,將問題轉(zhuǎn)化為求與。
解:(1),
當(dāng)時,恒成立,即函數(shù)的單調(diào)增區(qū)間為,無單調(diào)減區(qū)間,所以不存在極值.
當(dāng)時,令,得,當(dāng)時,,當(dāng)時,,
故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,此時函數(shù)在處取得極大值,極大值為
綜上,當(dāng)時,函數(shù)的單調(diào)增區(qū)間為,無單調(diào)減區(qū)間,不存在極值.當(dāng)時,函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,極大值為,無極小值
(2)當(dāng)時,假設(shè)存在,使得成立,則對,滿足
由可得,
.
令,則,所以在上單調(diào)遞增,所以,所以,所以在上單調(diào)遞增,
所以
由(1)可知,①當(dāng)時,即時,函數(shù)在上單調(diào)遞減,所以的最小值是.
②當(dāng),即時,函數(shù)在上單調(diào)遞增,
所以的最小值是.
③當(dāng)時,即時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.又,所以當(dāng)時,在上的最小值是.當(dāng)時,在上的最小值是
所以當(dāng)時,在上的最小值是,故,
解得,所以.
當(dāng)時,函數(shù)在上的最小值是,故,
解得,所以.故實數(shù)的取值范圍是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)討論函數(shù)的單調(diào)性;
(3)若對,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】西北某省會城市計劃新修一座城市運動公園,設(shè)計平面如圖所示:其為五邊形,其中三角形區(qū)域為球類活動場所;四邊形為文藝活動場所,,為運動小道(不考慮寬度),,千米.
(1)求小道的長度;
(2)求球類活動場所的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年是中國改革開放的第40周年,為了充分認(rèn)識新形勢下改革開放的時代性,某地的民調(diào)機構(gòu)隨機選取了該地的100名市民進行調(diào)查,將他們的年齡分成6段:,并繪制了如圖所示的頻率分布直方圖.
(1)現(xiàn)從年齡在內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機抽取3人進行座談,用表示年齡在內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;
(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調(diào)查,其中有名市民的年齡在的概率為.當(dāng)最大時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用一張長為12,寬為8的鐵皮圍成圓柱形的側(cè)面,則這個圓柱的體積為_____;半徑為R的半圓形鐵皮卷成一個圓錐筒,那么這個圓錐筒的高是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形是邊長為的菱形,,與交于點,平面平面,,,.
(1)求證:平面;
(2)若為等邊三角形,點為的中點,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】回答下列兩個問題, 并給出例子或證明.
(1)對任意正整數(shù), 在平面上是否都存在個不在同一條直線上的點, 使得任意兩點間的距離都為正整數(shù)?
(2)在平面上是否存在兩兩不同的無限點列組成的點集, 使得內(nèi)所有點不在同一條直線上, 且內(nèi)任意兩點間的距離為正整數(shù)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com